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1 Introduction

The effective lower bound (ELB) on nominal interest rates has been widely studied in recent years. It is
standard to analyse this problem with dynamic stochastic general equilibrium (DSGE) models, where the
ELB shows up as an inequality constraint on the nominal interest rate. However, inequality constraints
complicate the application of standard solution strategies, e.g. perturbation methods. These methods
approximate the behaviour of a dynamical non-linear model around a point (usually, but not necessarily,
via linearisation) using differentiability assumptions. Occasionally binding constraints pose a challenge
for direct application of these methods.

In this paper, we present a toolkit aiming to facilitate the application of a generalised version of the
solution method first used in Eggertsson and Woodford (2003), who analyse the ELB in the face of a
two-state Markov process for the exogenous shocks with an absorbing state.1 We illustrate the algorithm
in the canonical New Keynesian (NK) model and in the medium-scale DSGE model developed by the
Federal Reserve Bank of New York (FRBNY). As an economic application, we consider various policy
rules and study their performance relative to the optimal commitment equilibrium. Previously suggested
policy rules – such as price level targeting and nominal GDP targeting – do not perform well when the
price level does not fall by a large amount, as observed during the Great Recession, because they do not
imply sufficiently strong commitment to low future interest rate (”make-up strategy”). This also applies
to a policy rule we term Average Inflation Targeting which arguably approximates the new policy regime
by the Federal Reserve recently presented by Powell (2020). To solve this shortcoming, we propose two
new policy rules, a Cumulative Nominal GDP Targeting Rule and a Symmetric Dual-Objective Targeting Rule
that are more robust. Had either of these policy rules been in place in 2008, and believed to be credible,
the model simulation suggests the Federal Reserve would have reduced the output contraction (relative
to trend) by about 80-90 percent. The comparable number for the average inflation targeting rule is 25
percent (Table 3).

Several strategies have been proposed to deal with the presence of inequality constraints in DSGE models.
Eggertsson and Woodford (2003) exploit a particular structure for the exogenous disturbances: the shock
process implies that the model unexpectedly moves to a ”crisis state” and then reverts back to the ”steady
state” with a fixed probability. Once back to the steady state, it stays there forever (i.e. the steady state is an
absorbing state). The idea behind the approach is intuitive: instead of treating a single dynamical system
that contains both a set of equality constraints and a set of occasionally binding inequality constraints, we
split the system into several parts called regimes, each of which contains equality constraints exclusively.
Once cast in this form, we can apply perturbation methods, since each equation is differentiable.

An application to the ELB scenario should make this clear: we distinguish among four regimes, each of
them corresponding to a different combination of the status of the inequality constraint (e.g. ELB binding
or not) and the exogenous Markov disturbance (crisis or steady state). For the regimes that feature the
ELB not binding, we treat the model as if the ELB was not present. In the other two regimes, when the
ELB constraint is binding, the equilibrium conditions will be characterised by the equality constraint (e.g.
it = it−1 = 0). Since all four dynamical systems are characterised by a set of equations, each can be
solved using perturbation techniques.

The assumptions on the shock structure allow us to solve the model recursively in regimes. Starting from
the last regime, where the ELB is not relevant, we work backwards to the period when the shock hits the

1Source codes and examples are maintained at https://github.com/gautieggertsson/2-state-toolkit. Section
A.2 in the Appendix presents a short user guide. Appendix B contains a number of illustrative examples.
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system obtaining a piece-wise solution. Since outcomes in later regimes influence behaviour in earlier
ones through expectations, the strategy is not based on a simple merger of separate models and sticking
their solutions together.

There are two key advantages to our approach: first, its relative simplicity allows for handling of models
with many state variables; second, compared to competing local solution techniques, our strategy allows
for the basic stochastic structure, making it attractive for simple estimations.2 It is worth noting that there
is nothing special about the interest rate constraint for using this toolkit. Any model with a constraint
that is temporarily binding, can be solved using this method.

The toolkit features an algorithm that generalises the solution method in Eggertsson and Woodford (2003).
In particular, it allows for the case of a regime in which the two-state Markov process is in the crisis state,
but the ELB is not binding. This feature is of particular importance for our application of analysing policy
rules: a common property of policy rules is that they imply an inertial response of the interest rate. An
example would be a Taylor-type rule with lagged terms for the nominal interest rates. Rules of this kind
often do not imply an immediate reduction of the interest rate to the ELB once the two-state Markov
disturbance switches to the low state. The new feature is thus a meaningful addition and facilitates the
analysis of different types of policy rules in the presence of an ELB, which is the main application in this
paper.

The idea of attacking the problem by constructing a piece-wise solution is not new, nor is the idea of
a toolkit applying it. In fact, Guerrieri and Iacoviello (2015), henceforth OccBin, provide a toolkit for
solving dynamic models with occasionally binding constraints in a similar fashion. The main difference
from OccBin is that we do not assume perfect foresight, i.e. a deterministic setting. This feature also
differentiates our approach from several other strategies, such as the Extended Path algorithm. To achieve
this, we rely on the specific shock structure implied by a two-state Markov process with an absorbing
state. Expectations about the future path of variables are a crucial component of models related to the
ELB (e.g. uncertainty whether the economy will hit the ELB and uncertain timing of lift-off), and hence
allowing for uncertainty is a useful feature of the toolkit.

Adding a two-state Markov process with an absorbing state usually implies the following timing for the
models analysed with the toolkit: initially, a shock hits the economy and the response of the central bank
might be to immediately lower the interest rate to zero. In every period there is some probability that
the disturbance reverts to its initial absorbing condition. There will often be a transition period, lasting
from the point when the shock reverts to its initial level until all other variables of the model return
to their steady state values. One benefit of our setup is that one can separately calibrate the expected
duration of the constraint being binding from its actual, realised duration. Empirical evidence on the
Great Recession, for instance the Blue Chip financial forecasts (Aspen Publishers 2008-12), suggests that
market participants were expecting the ELB to bind for a much shorter time than turned out to be the
case. We can account for this evidence, and can analyse several questions related to it, such as what
would have been the output gains had the Federal Reserve adopted alternative policy regimes to that in
place during the Financial Crisis of 2008, results that we have already noted.

The expected duration of the ELB episode is not necessarily exogenously determined simply by the
transition probability of the shock: in the case of a central bank that has commitment power, the duration
of a binding ELB will typically be longer than the persistence of the disturbance in its crisis state. The

2Denes, Eggertsson and Gilbukh (2013) is an example that contains a simple estimation that exploits the two-state Markov chain
the toolkit solves for.
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periods where the inequality constraint is binding therefore does not coincide with periods where the
shock is in the low state. This means that the duration at the ELB will be endogenously determined in the
model, depending on the optimal decisions taken by the monetary authority, which depends, among
other thing, on the realisation of the shock. This is a key challenge in solving the model discussed in
detail in the body of the paper.

Our main application is monetary policy when the ELB is reached. Since the standard policy tool of
affecting nominal interest rates is not available anymore, influencing expectations about their future
path becomes the main lever through which the monetary authority can affect present variables. In this
environment, policy rules that are able to mimic some form of commitment from the central bank are
believed to perform relatively well. For example, in Eggertsson and Woodford (2003), who predict a
strong deflation, rules that commit to bringing the price level back to pre-crisis levels, and to inflate in the
future, are very effective. A key economic finding is that price level targeting and nominal GDP targeting
do not do well if there is little fall in in inflation, as was the case during the Financial Crisis of 2008 in
the U.S. The policy of price level targeting we consider is arguably equivalent to the policy of ”average
inflation targeting” recently adopted by the Federal Reserve when amending its policy framework in
August 2020, if the average is taken over a sufficiently long period of time. We also consider an average
inflation targeting regime, for which the time period averaged over is shorter. This policy provides even
less stimulus at the ELB.

In addition, we propose two new rules, a Cumulative Nominal GDP Targeting Rule and a Symmetric Dual-
Objective Targeting Rule, that imply a commitment from the central bank to make up for past deviations
from target on both the price level and output. We study their performance in the standard NK model as
well as in the NYFRB DSGE model and show that they generally perform better than standard rules in
the literature. We show this in an environment with low inflation and small movement in the price level,
as experienced during the Great Recession. Since both rules imply an aggressive reaction to past output
misses, they manage to communicate that the longer the crisis, the more accommodative monetary policy
will be. This in turn generates enough stimulus to prevent a large recession to start with.

Of previously proposed policy rules, the ones that perform best are the Superinertial Rule described in
Rotemberg and Woodford (1999) and the Augmented Taylor Rule by Reifschneider and Williams (2000).
Policy rules that do not perform as well, include Price Level and Nominal GDP Targeting, as well as Average
Inflation Targeting, a result in line with Reifschneider and Wilcox (2019). The key problem of these rules, is
that they do not prescribe strong enough stimulus in absence of falling inflation.

The most important advantage of the stochastic structure our toolkit embodies is that there is a clear
distinction between the expected duration of the shock and the realisation of it, but the two will of course
coincide under perfect foresight. This allows us to clearly show the advantage of policy commitments,
such as as those exemplified by our targeting rules, relative to the optimal time-dependent policy –
a strategy that resembles the interventions of several central banks during the crisis of 2008. Under
optimal time-dependence, the duration of the ELB is tied to calendar time. In contrast, the targeting
rule we consider implies a duration at the ELB that depends upon economic conditions. We highlight
that a properly chosen state-contingent policy rule vastly outperform optimal time-dependent policy, a
distinction that is not as transparent in a deterministic setting.

In an additional application, we utilise our toolkit to contribute to a recent debate on the economic effects
of Forward Guidance policy. We distinguish two cases: the standard theory on forward guidance creates
additional stimulus by a fully credible announcement of keeping the interest rate at the ELB for additional
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periods; this is an expansionary policy. The second case is what Campbell et al. (2012) call Delphic forward
guidance and Nakamura and Steinsson (2018) refer to as information effects. Here, the expected duration
of the ELB episode rises as well, but this time solely due to the revelation of information leading agents
to update their beliefs about economic fundamentals; this entails an economic contraction. We show
that both scenarios can match the same increase in the expected duration at the ELB, but lead to vastly
different economic outcomes.

The paper is structured as follows: Section 2 outlines how the solution method relates to the literature;
Section 3 presents the solution algorithm; Section 4 provides a few applications in the context previously
defined; Section 5 applies our toolkit to the medium-scale FRBNY DSGE model; Section 6 concludes.

2 Related Literature

There exists a sizeable literature on solution methods for DSGE models.3 Solution strategies can be
classified into local and global methods. The former includes perturbation methods, the latter projection
methods. Projection methods can handle occasionally binding constraints in a direct way, but they are
associated with considerable computational burden and suffer from the curse of dimensionality.

Our approach relies on perturbation. Generally, provided the system in question is well behaved,
perturbation methods can handle large models with many state variables and provide a high quality of
approximation. However, in the presence of occasionally binding constraints differentiability does not
hold everywhere.

Several attempts have been made to address this issue: our approach is a re-work and extension of
the algorithm proposed in Eggertsson and Woodford (2003) that solves a NK model with a ELB in
a fully stochastic setting. Jung, Teranishi and Watanabe (2005) is another early strategy based on a
piece-wise solution, but in a deterministic environment. The paper closest in spirit to ours is Guerrieri
and Iacoviello (2015), already mentioned in the introduction. Occbin solves deterministic dynamic models
with occasionally binding constraints by piece-wise first-order perturbation. It can handle an AR(1)
shock structure, independent shocks, several alternations between slack and binding modes in one
simulation. However, it assumes perfect foresight. From this discussion it should be clear that our toolkit
is complementary to OccBin. Each is tailored to a particular set of questions. Both have in common that
they are easily implementable.

Doubts have been raised whether linearisation offers a good approximation to the fully non-linear system
dynamics in the presence of the ELB, see for example Boneva, Braun and Waki (2016). Eggertsson
and Singh (2019) look at the non-linear version of Eggertsson and Woodford (2003) and find that the
approximation error is modest even for large disturbances, provided the approximated solution is
parameterized to match the same empirical evidence and the non-linear solution. They also comment on
poor approximation results that have been mentioned in relation to Rotemberg pricing,4 a finding they
ultimately trace back to how the cost of price changes shows up in the resource constraint of the model,
rather than errors introduced by linearisation.

One way to account for the ELB is to replace the inequality constraint with news shocks: ones that
are realised some time before they actually enter equations of the model. Lasen and Svensson (2011)

3For an overview we refer to the recent handbook chapter by Fernández-Villaverde, Rubio-Ramrez and Schorfheide (2016).
4This point was also made in Miao and Ngo (2019).
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and Holden and Paetz (2012) develop this point: they use such disturbances to transform a non-linear
constraint into ”as if” linear models. The approach is able to handle higher order approximations as
well as uncertainty. Holden (2016) offers a Dynare toolbox for the easy implementation of the procedure,
DynareOCB, providing reliable accuracy with sufficient speed.

Another local method of solving large systems within reasonable time is the Extended Path algorithm
(EP), proposed by Fair and Taylor (1983) and applied to a model with a ELB by Adjemian and Juillard
(2011). This method sets a terminal date when the solution trajectory is assumed to be sufficiently close
to the steady state. The EP algorithm is solved under perfect foresight: at each point in time, all future
shocks are assumed to be equal to their expected values of zero. Adjemian and Juillard (2013) note that
ignoring Jensen’s inequality under an EP approach leads to a sizeable approximation error in models
with occasionally-binding constraints. The authors extend EP to a Stochastic Extended Path algorithm that
is more suitable for a setting with non-linear constraints. It is somewhat of a middle ground between
perfect foresight and a fully stochastic setting: for some finite number of periods ahead, the setting is
stochastic (e.g. the expectation is explicitly approximated via quadrature integration) while after that
period all disturbances are assumed to be zero.

Another strategy is to replace the inequality constraint by a smooth penalty function, thereby eliminating
the inequality constraints from the model (this is also referred to as barrier method). The idea is to penalise
the agents’ utility in cases where the inequality constraint is violated. This method is used in outlined in
Judd (1998) and put to use in Preston and Roca (2007) and Kim, Kollmann and Kim (2010), among others.
In the centext of the ELB it is first applied in Rotemberg and Woodford (1997).5

The advantage of the approaches discussed so far is that they can manage medium- to large-sized models
in reasonable time. Global solution methods can account for non-linearities and deliver solutions with
high precision, but suffer from the curse of dimensionality. Improvements in computation power and
methods, make this more direct approach, however, increasingly more attractive and applicable.6

Some papers using projection methods to analyse the ELB should also be mentioned here: Adam and
Billi (2006) and Nakov (2008) work with the linearised system of equations of standard NK models, and
the ELB is the only source of non-linearity. Fernández-Villaverde, Rubio-Ramrez and Schorfheide (2016)
solve the fully non-linear model and highlight the benefits of this approach.

It is worth highlighting an important limitation of the solution method applied in this paper, that makes
it less appropriate to analyse some questions. Due to the that the shock that generates the ELB returns to
an absorbing steady state, our method is not suitable to address questions related to repeated episodes of
the ELB. For example, if one wants to address how anticipation future ELB episodes matter for policy
under normal circumstances, the method developed here is not useful, absent further extensions. Global
methods, in contrast, are well suitable for this class of questions.

Given the numerous and powerful alternatives available, we do not claim superiority to any of the
presented methods. Which approach suits best for a particular problem at hand will have to be evaluated
on an individual basis. Our method has the advantage of tractability, simplicity, fast implementation,
and the flexibility to account for a particular kind of uncertainty that has been popular in the literature.

In an application of the toolkit, we analyse optimal policy rules in economies at risk of hitting the ELB.

5An application to the ELB is also discussed in Woodford (2003), Chapter 6, Section 4.2.
6Maliar and Maliar (2015) is a recent attempt to ameliorate the curse of dimensionality when using projection methods: the key

to this result is to repeatedly choose the grid on which the projection method operates in a smart way, using a stochastic simulations
approach. Gust et al. (2017) use this method to solve a medium-scale DSGE model with an occasionally-binding ZLB constraint and
use the methodology to estimate the model using Bayesian methods.
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There is a vast literature analysing optimal rules. Recent contributions include Kiley and Roberts (2017),
Mertens and Williams (2019a) and Mertens and Williams (2019b). Nakov (2008) is an earlier paper
looking at optimal rules at the ELB. Our analysis highlights the implications of a stable price level for
rules like price level targeting and nominal GDP targeting, and proposes rules that are robust to such
environments.

3 A Piece-wise Linear Solution to Rational Expectations Models with

Inequality Constraints

3.1 Basic Idea

In this section we outline our approach in applying perturbation methods to models with inequality
constraints.7 Technically, the use of the implicit function theorem (IFT) on which perturbation methods
rely requires the function approximated to be smooth. Inequality constraints introduce a kink in the
model at the point where the inequality constraint becomes binding. On a more intuitive level, once
the inequality constraint becomes binding (or slack, depending on the point of approximation), local
approximation via IFT becomes inaccurate.

The basic idea of our approach is to circumvent this problem by the following: we split the model into
several parts, called regimes, depending on which set of equations applies. This strategy decomposes
the inequality constraints that characterises the model in general into several equality constraints that
characterise each regime separately. This turns one system with occasionally binding constraints into
several interlinked systems. Critically though, it does not simply amount to transforming the problem
into independent dynamical linear systems: optimal decision-making in the current regime takes into
account uncertainty as to what regime will govern future dynamics of the model, thus linking the
dynamics of one regime to the next.

We assume the fundamental disturbance εt ∈ {εL, εH} hitting the system to be characterised by a two-
state Markov process with an absorbing state, i.e. P(εt+1 = εL|εt = εL) = µ and P(εt+1 = εH |εt = εH) =

1.8 This assumption buys a lot: this shock structure allows for the decomposition of a single dynamical
system into several regimes.9 In the applications we consider in this paper, the regimes are:

0. 0 < t < T̃: the shock is in the low state, εt = εL and the ELB is not yet binding;10

1. T̃ ≤ t < τ: the shock is in the low state, εt = εL, and the ELB is binding;

2. τ ≤ t < τ + kτ : the shock has returned to the high, absorbing state, εt = εH but the ELB is still
binding;

7See Fernández-Villaverde, Rubio-Ramrez and Schorfheide (2016) for an overview on solution methods for macroeconomic
models, including perturbation methods. Schmitt-Grohé and Uribe (2009) and Judd (1998) are excellent sources for in depth
treatment of perturbation methods.

8The exogenous disturbance εt needs not to be a scalar. As long as the shocks are perfectly correlated, one should think of εt as a
vector of perfectly correlated innovations.

9An example of this in the context of the ELB would be optimal policy by the central bank under commitment. Here we can split
the problem into three regimes, one where the shock is over and the ELB is slack, one where the shock is over but the ELB binds,
and one where the shock is on an the ELB binds. Note that not every problem needs to have three (or four) regimes: the problem of
the central bank under discretion (without endogenous state variables) will typically only have two regimes.

10This regime generalises the solution method in Eggertsson and Woodford (2003) to allow for very sluggish policy rules. Notice
that T̃ can be 1, meaning that regime 0 never starts. This is the case, for example, of a fully forward-looking economy such as the
standard NK model with a policy rule that has no lagged term.
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3. τ + kτ ≤ t: the shock remains in the absorbing state, εt = εH , and the ELB is not binding.

At time t = 1 a realisation of the shock in the low state hits the system, ε1 = εL. In period t = τ the
disturbance reverts to the high, absorbing state and stays there forever. Note that for each possible τ, the
solution proposed above prescribes kτ additional periods in which the ELB is binding.

As for the inequality constraint, there are a few switching points: first, the inequality constraint is binding
starting from some point in time T̃; this is the switching time from regime 0 to regime 1.11 Note that
from the agents’ perspective T̃ is known and deterministic. Second, when the shock has reverted to its
absorbing state at time τ the inequality constraint could still be binding. This situation constitutes a
separate regime and the switching time is stochastic by nature as it is governed by the Markov process.
τ is the switching time from regime 0 or 1 to regime 2. The duration of regime 2 is denoted by kτ , and
might depend on the duration of the preceding regimes. Finally, τ + kτ represents the time when the
economy switches from regime 2 to regime 3, where the shock is in its absorbing state and the constraint
does not bind anymore; regime 3 governs the dynamics thereafter.12

To take into account the expectations channel that interlinks the regimes, we solve the problem backwards,
starting with regime 3. Note that since we assume an absorbing state for the exogenous shock, the system
is deterministic in regimes 2 and 3. It is in regimes 0 and 1, where expectations about future realisations
of the shock affect the current behaviour, that the stochastic setting comes into play.

3.2 General Formulation

To introduce technical notation, many macroeconomic models can be formulated in the following form:

Et f̃
(
ξ̃t+1, ξ̃t, ε̃t

)
≤ 0 (1)

where ξ̃t is a vector of endogenous variables and ε̃t is a (vector) shock following a two-state Markov
process with an absorbing state.13 The disturbance switches back to the absorbing state with probability
one at a (deterministic) time, τmax.14 Et is the mathematical operator for expectation conditional on
information available at time t and f̃ (·, ·, ·) is a differentiable function. Typically, f̃ contains structural
equations and/or necessary first order conditions of an optimisation problem arising in a microfounded
economic model. The inequality sign in (1) accounts for the presence of inequality constraints.15 For the
sake of convenience, we transform the notation in (1) as follows:

Et f ∗
(
ξ∗t+1, ξ∗t

)
≤ 0 (2)

where ξ∗t =
[
ξ̃t, ε̃t−1

]′
=
[
Z∗t , S∗t−1, ε̃t−1

]′ is a vector of N∗Y = (NZ + NS + Nε) elements, of which NZ non-
predetermined (or jump) variables Z∗t , NS predetermined variables S∗t−1, and Nε exogenous disturbances
ε̃t−1.

11Notice that the toolkit allows for T̃ to be ”large enough”, meaning that regime 1 never starts. This generalises the use of the
toolkit for shocks that are enough small to not trigger the inequality constraint to bind.

12The toolkit in its current version does not allow to switch from a higher regime back to a lower regime. This means we do not
allow to move from regime 1 to regime 0, or from regime 3 to regime 2. Some models could require such a feature for a solution to
be found, e.g. in models implying a lot of inertia. We never encountered such a case when working with the toolkit.

13This notation requires that exogenous variables appear in present values only.
14Note that τmax can be set so that the period at which the shock reverts to its high state is arbitrarily far in the future.
15The full set of first order conditions usually also includes transversality conditions, No-Ponzi scheme conditions and initial

conditions. For brevity’s sake we do not explicitly formulate them. Moreover, note that this formulation is general enough to
include higher order difference equations, since they can be easily transformed into first order difference equations by redefining ξ̃.
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In order to deal with the inequality constraints, we propose to split the problem into several regimes. In
each regime the system of equations can take a different form, so we denote each resulting system by
another subscript. Importantly, the inequality constraints are either slack or binding, so that we write a
system of equations instead of inequalities. We denote each system of equations by the following:

Et f ∗i
(
ξ∗t+1, ξ∗t

)
= 0 (3)

where i ∈ {0, 1, 2, 3} indicates the regime.

Next, we approximate the non-linear systems of equations in (3) to the first order around a specific point.
Usually, we approximate around the deterministic steady state ξ̄ of some “baseline regime” ĩ that fulfils:

f ∗ĩ (ξ̄, ξ̄) = 0. (4)

We can choose to linearise around an equilibrium point of any regime, and the particular choice will
depend on the application. We can write the resulting linear system of equations in the following general
form:

Ai Et ξt+1 = Biξt (5)

where Ai, Bi are NY × NY coefficient matrices and ξt = [Zt, St−1, εt−1, Ct]′ = [Zt, Pt−1]
′ is a NY =(

N∗Y + 1
)
× 1 vector.16 The variables ξt, ZT , St, εt, Pt are now written without star: this due to the process

of linearisation, where the variables are often transformed, e.g. to log-deviation from steady state. The
term Ct accounts for binding inequality constraint.17

The solution path to small perturbations that is derived from the linearised system in (5) will be exact
only up to a residual of order O(‖ε, δ̄‖2). The O(.) term is the remainder appearing in the first-order
Taylor-series approximation. In addition, ε in the big-O expression refers to the perturbation of the shock
variable and δ̄ takes account of the fact that the equilibrium in regimes other than the baseline might
not coincide with the point we linearise around. This amounts to another “perturbation” that brings us
off the point we approximate around. In our examples we will usually have δ̄ = i−ī

1+ī , with ī being the
non-stochastic steady-state interest rate. Then we will have δ̄ 6= 0 if i = 0, which is the case in regimes 1
and 2.

As noted in Eggertsson and Woodford (2003), as well as in Woodford (2003) p.383 ff., perturbation theory
provides accurate linearised solutions only for shocks that are small enough, i.e. both ε and δ small.
We now briefly discuss this assumption: Eggertsson and Woodford (2003) show that we can make δ̄

arbitrarily small by assuming that there is interest paid on base money. In our application, δ̄ is close to
realistic values (e.g. a drop of the interest rate from 3 percent to 0), and we hope (without verifying) that
our linear approximation will be accurate. Eggertsson and Singh (2019) compare the fully non-linear
version of a standard NK model with a binding ELB to the log-linearised one, and find that they behave
similarly for reasonable values of disturbances, including ours.

The system in (5) has a familiar form and we can therefore apply standard rational-expectations solution
methods. All regimes except the last will have a finite duration. Blanchard and Kahn (1980) present the
conditions under which a system of infinite horizon like (5) has a unique bounded solution. The regimes

16The vector Pt contains all predetermined variables, which include past exogenous shocks as well as constants.
17When the constraint is not binding we typically have Ct = 0. To give a concrete example, consider the zero lower bound and

the nominal rate it. We can define ît =
it−ī
1+ī . When the zero bound is binding, we have it = 0 and ît = − ī

1+ī . This is an example of a
constant term.
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before the last will have a finite terminal date and can be solved recursively. Solutions will take the form:

Pt = Gi
t Pt−1 (6)

Zt = Di
t Pt (7)

where Gi
t and Di

t are transition matrices. We see that time t variables will be a linear combination of
pre-determined variables, shocks and constants. Once we find all transition matrices an initial condition
for the predetermined variables P0 allows us to compute the evolution of the dynamical system.

3.3 The Solution Algorithm

After this general outline of our approach, we want to show the way to derive the transition matrices of
every regime. Since transition matrices of earlier regimes depend on later ones, we solve the problem
recursively. We will first take the length of each regime as given and then discuss how to determine a
vector k and the time T̃. The former contains the length of regime 2 for each realisation of the shock path.
We will refer to those realisations as contingencies.

3.3.1 Finding the transition matrices in all four regimes given k and T̃

Here we describe the construction of matrices Gi
t and Di

t for each regime. We will rename the matrices
according to the following notation, so that they correspond to the state they are in.

Period t t < T̃ . . . T̃ . . . t < τ . . . τ . . . τ ≤ t < τ + kτ . . . t ≥ τ + kτ

Dt D0,t . . . D1,T̃ . . . D1,t . . . D2,kτ . . . D2,j . . . D3

Gt G0,t . . . G1,T̃ . . . G1,t . . . G2,kτ . . . G2,j . . . G3

where j = kτ − (t− τ) denotes how many periods are left until the ELB is no longer binding.

Solution for regime 3: t ≥ τ + kτ . The system can be written in the following form:

A3 Et

[
Zt+1

Pt

]
= B3

[
Zt

Pt−1

]
. (8)

A system of this form can be solved by the method outlined in Blanchard and Kahn (1980) as well as in
King and Watson (1998).

The solution takes the form:

Pt =G3 Pt−1

Zt =D3 Pt−1.

Superscript 3 denotes the regime, and no subscripts are present because D3 and G3 do not depend on
time.

Solution for regime 2: τ ≤ t < τ + kτ . As in the previous case, the system can be written as:
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A2 Et

[
Zt+1

Pt

]
= B2

[
Zt

Pt−1

]
(9)[

A2
1 A2

2

A2
3 A2

4

] [
Et Zt+1

Pt

]
=

[
B2

1 B2
2

B2
3 B2

4

] [
Zt

Pt−1

]

and we want to find a solution of the form:

Pt = G2,j Pt−1

Zt = D2,j Pt−1.

We show how to derive those matrices in the following Lemma 1.

Lemma 1. Let Ã be the reduced row echelon form of B̃, where

Ã =

[
I 0 −C1 −C2

0 I −C3 −C4

]
and B̃ =

[
A2

2 −B2
1 −B2

2 A2
1

A2
4 −B2

3 −B2
4 A2

3

]
.

The solution in regime 2 will be:18

G2,j =
[

I − C2D2,j−1
]−1

C1

D2,j = C3 + C4D2,j−1G2,j.

Also, it will hold D2,0 = D3, and G2,0 = G3.

Proof. See Appendix A.1.

Solution for regime 1: t < τ. Similarly to regime 2, we can write the solution into the form

[
A1

1 A1
2

A1
3 A1

4

] [
Et Zt+1

Pt

]
=

[
B1

1 B1
2

B1
3 B1

4

] [
Zt

Pt−1

]
. (10)

Note that the transition matrices will now be time varying. This is because in regime 1 the expecta-
tions at time t depend on kt+1, since EtZt+1 = µZt+1|εt+1=εL

+ (1− µ)Zt+1|εt+1=εH
= µD1

t+1Pt + (1−
µ)D2,kt+1 Pt ≡ Ď1

t Pt. Recall that with probability µ the shock will stay in the low state, while with proba-
bility 1− µ the shock will switch back to the high state and the coefficient matrix D will be calculated
according to the next regime.

Let C̃t be the row reduced echelon form of D̃t, where:

C̃t =

[
I 0 −Ct,1 −Ct,2

0 I −Ct,3 −Ct,4

]
and D̃t =

[
At,2 −Bt,1 −Bt,2 At,1

At,4 −Bt,3 −Bt,4 At,3

]
.

18We make use of the deterministic nature of regimes 2 and 3 to ignore the expectation term.
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Then, we can rewrite the system to be:[
Pt

Zt

]
=

[
Ct,1 Ct,2

Ct,3 Ct,4

] [
Pt−1

Et Zt+1

]
=

[
Ct,1 Ct,2

Ct,3 Ct,4

] [
Pt−1

Ď1
t Pt

]
. (11)

Once again, we want to find a solution of the form:

Pt = G1,tPt−1

Zt = D1,tPt−1.

To solve for these matrices we assume that at some time τmax the probability of the shock returning to its
absorbing state (given that this did not happen at time τmax − 1) is no longer 1− µ, but 1. This allows us
to use the same solution strategy as in regime 2 to obtain:

G1,τmax−1 =
[

I − C2D2,kτmax
]−1

Cτmax ,1

D1,τmax−1 = C3 + C4D2,kτmax G1,τmax−1.

We can apply this methodology recursively for t < τmax − 1:

G1,t =
[

I − Ct,2Ď1
t

]−1
Ct,1

D1,t = Ct,3 + Ct,4Ď1
t G1,t.

Solution for regime 0: t < T̃. The solution for regime 0 follows the same procedure to the one for regime
1. The only difference is that the matrices A and B differ from those in regime 1. Regime 0 holds until
time t = T̃. The transition matrices in regime 0 will have the form:

G0,t =
[

I − Ct,2Ď0
t

]−1
Ct,1

D0,t = Ct,3 + Ct,4Ď0
t G0,t

So far we have considered the vector k (the duration of regime 2 for each and every τ) and the scalar
T̃ (the period in which regime 1 starts holding) to be known by the agents of the economy. The next
Sections explain the algorithm we use to find them.

3.3.2 Finding k given T̃

The algorithm to find k for a given T̃ is straightforward: we start from a vector of zeros, namely that
regime 2 is never believed to hold, under any contingency. We then use the transition matrices found as
described in the previous section and trace the evolution of all variables, including the one constrained
with inequality (e.g. the nominal interest rate). Starting from the first contingency, we then check whether
the inequality constraint is violated in the first period of regime 3. In case it is not violated, we move
forward to the next contingency until we encounter a contingency for which, according to the transition
matrices, the inequality is violated in the first period of regime 3. Whenever we find such a contingency,
we update k by adding one unit to the duration of regime 2 under such contingency.
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In the interest of saving computing power, it is possible to assume that there is an increasing relationship
between the contingency and the length of regime 2. Such an assumption is harmless in some models but
it is still to be shown that the results are not affected in general. If one wants to verify that a given k does
indeed imply a solution to the dynamic system, it is possible to check that the necessary condition on the
variable whose constraint is potentially binding is not violated.19 After having updated k, we proceed as
explained in the previous sections by calculating a new set of transition matrices and then we follow the
algorithm outlined above to check if there is some contingency for which the inequality is violated in the
first period of regime 3.20

3.3.3 Finding T̃

The algorithm to find T̃ is intuitive. For a given T̃, say T (which is initialised at 1), we take two steps
to check whether it is the solution: first, for T̃ = T, meaning that regime 1 starts at time T, we check
that the inequality constraint is not violated at t = T − 1; second, we impose T̃ = T + 1, assuming that
regime 1 starts at T + 1. We find the corresponding k, simulate the economy forward, and finally check
whether the inequality constraint is violated for t = T. If the inequality constraint is indeed violated, then
regime 1 should start at t = T + 1− 1 = T and we conclude that T̃ = T. If the inequality constraint is not
violated for t = T, this implies that regime 0 is correctly imposed in t = T + 1. In such case we continue
iterating by increasing T by one.

4 Applications

As an application we revisit Eggertsson and Woodford (2003), henceforth EW2003, and analyse the
optimal monetary policy at the ELB in the standard NK model. We then ask what kind of policy rule
can implement it. Our key finding is that EW2003 suggests a simplified price level targeting rule which
performs poorly in replicating the optimal commitment in numerical experiments where the price level
does not drop much at the ELB. We consider this scenario because of its similarity to the Great Recession
in the United States, and because it stands in stark contrast with the experiment considered in EW2003.
We also show that popular policy proposals such as nominal GDP targeting do relatively poorly in
simulations in which there is not a significant fall in the price level at the ELB. We explain the logic of
this result and suggest new alternative policy rules that do better. Finally, we confirm that the insights
from the numerical experiments in the standard two-equation NK model extends to a medium-scale
quantitative model, such as the one used by the Federal Reserve Bank of New York.

4.1 The Optimal Policy Commitment in Eggertsson and Woodford (2003)

EW2003 presents the standard two-equation NK model and analyses the optimal monetary policy under
commitment (OCP) taking account of the ELB. The policy can be represented by the following set of

19This situation arises for example when a Taylor rule does prescribe a negative nominal interest rate, or – as in Eggertsson and
Woodford (2003) – when the Lagrange multiplier is correctly non-negative.

20Following this procedure, it is possible to find a k that solves the dynamic system with binding constraints. The existence of a k
does not imply its uniqueness. However, we never found multiple solutions to the same problem when applying our solution
method.
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Figure 1: Optimal Commitment Policy as in Eggertsson and Woodford (2003). Coloured lines are the impulse
response for output (Ŷt), inflation (π), the nominal interest rate (i), and natural rate (rn), grey lines represent the
evolution for single contingencies (from 2 to 15). The vertical axes report deviations from steady state, in percentage
points (annualised). The vertical axis for the interest rate reports annualised percentage points.
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equations:21

Ŷt = Et Ŷt+1 − σ(it −Et π̂t+1 − rn
t ) (12)

π̂t = κŶt + β Et π̂t+1 (13)

0 = π̂t + φ2t − φ2t−1 −
1
β

σφ1t−1 (14)

0 = λŶt + φ1t −
1
β

φ1t−1 − κφ2t (15)

φ1t ≥ 0 (16)

it ≥ 0 (17)

φ1tit = 0 (18)

where Ŷt is output in deviation from steady state, π̂t is inflation, it is the nominal interest rate, φ1t and φ2t

are Lagrange multipliers, and rn
t is an exogenous disturbance – the natural rate of interest – that follows a

two-state Markov process. Specifically, there is an unexpected reduction in the natural rate of interest in
period 1 so that rn

1 = rn
L < 0, and

rn
t>1 =


rn

L w.p. µ if rn
t−1 = rL

rn
H w.p. 1− µ if rn

t−1 = rL

rn
H if rn

t−1 = rH

(19)

The toolkit simulates the economy described above and produces the outputs as shown in Figure 1, which
replicates the results in EW2003. We outline the steps required for coding the simulation in Appendix A.2.
Each of the light grey lines represents a contingency, i.e. a specific realisation of the Markov process. Note
that the time period at which the exogenous disturbance switches to its absorbing state is sufficient to
characterise the specific realisation. For this reason, one can refer to a contingency as the period at which
the exogenous shock is back to its steady state. For example, the third grey line from the left for inflation,
output and interest rates corresponds to the case in which the natural rate of interest reverts back to
steady state in period t = 4. Observe that the evolution of a variable in a given contingency, prior to the
shock reverting to steady state, depends on expectation about the evolution of variables in all future
contingencies. The purple lines represent impulse response functions (IRF). Those are weighted averages
of the evolution of each variable and correspond to the expectation agents hold about the economy in the
initial period after the shock has been realised.

4.2 Implementing the Optimal Commitment in Eggertsson and Woodford (2003)
via a Price Level Target and a Nominal GDP Target

In Figure 2 we compare the optimal commitment to the standard Taylor rule (TTR) using the numerical
values assumed in EW2003. As emphasised in that paper, the Taylor rule, or equivalently a strict inflation
target, results in a large output drop (about 15 percent) and drop in inflation (about 10 percent) at the
ELB. The OCP – via the central bank committing to keeping the nominal interest rate low for a substantial
period of time – eliminates most of the drop in output. EW2003 also shows that a policy rule that fully
implements this equilibrium can be described as follows: at the ELB the central bank commits to not

21See Eggertsson and Woodford (2003) for more details on the derivation. We use the EW2003 parametrisation: θ = 7.87, σ = 0.5,
κ = 0.02, β = 0.99, λ = κ

θ , µ = 0.9, rn
L = −0.005, rn

H = β−1 − 1.
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Figure 2: Selected rules and optimal commitment (OCP) under Eggertsson and Woodford (2003) calibration. Lines
represent contingency 10 for output (Ŷ), inflation (π), the nominal interest rate (i), and nominal GDP (N̂). The vertical
axes report deviations from steady state, in percentage points (annualised figures). The vertical axis for the nominal
interest rate reports annualised percentage points.
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increasing the interest rates unless and index P̃t reaches a certain threshold P̂∗t , i.e. P̃t = P̂∗t where P̃t is
and index built as a weighted average of (detrended) output (Ŷt), and the (detrended) price index (P̂t):

P̃t ≡ P̂t +
κ

λ
Ŷt. (20)

The key to this commitment is how the threshold P̂∗t is formulated. EW2003 shows that the optimal
monetary policy commitment is replicated when P̂∗t is computed according to the following formula:

P̂∗t+1 = P̂∗t + β−1(1 + κσ)∆t − β−1∆t−1 (21)

where ∆t is a variable that measures how much the monetary authority misses its target in period t due
to the ELB:

∆t ≡ P̂∗t − P̃t. (22)

EW2003 recognises that this rule might be difficult to communicate in practice. Hence, the authors
suggest a simplified variation of the optimal rule:

P̂t +
κ

λ
Ŷt = P̂∗ ∀t (23)

Now the gap-adjusted Price Level Target (PLT) is fixed at all times. Figure 2 shows that this simplified
policy rule does a relatively good job in replicating OCP. The reason is that the fall in the price level
through the duration of the shock induces the central bank to promise a policy easing once the disturbance
has subsided. Thus, the interest rate remains at its lower bound even once the shock has reverted, and
inflation and output gap could be set at their steady state values. This is the key feature of the optimal
policy commitment. As stressed by Woodford (2012), targeting nominal GDP instead of the price level
has the same essential features. This kind of policy has been suggested by a number of authors such as
Hatzius and Stehn (2011) and Sumner (2012). A Nominal GDP Target (NGDPT) can be written as:

P̂t + Ŷt = Ŷ∗ (24)

which would be equivalent to the simplified price level target in EW2003 for special values of λ. Figure 2
shows that this policy does a relatively good job in replicating the optimal commitment in the EW2003
numerical example. Again, the key to this result is that the fall in the price level implies a substantial
monetary easing even once the shock has reverted back to steady state, as mandated by the optimal
policy commitment.

4.3 The Great Recession and the Robustness of Nominal GDP and a Price Level
Target

The key take-away from the last section was that the simple Price Level Target suggested in EW2003
and the Nominal GDP Target replicated the optimal commitment policy relatively well in the EW2003
numerical example. As we discussed, this is explained by the fact that the fall in the price level generates
a commitment to lower future nominal interest rates once the shock has reverted to steady state, while a
standard Taylor rule would imply an immediate normalisation.

A key feature of the EW2003 calibration, however, is that if one assumes standard policy rules, such as
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the Taylor rule, there is a substantial fall in the price level of about 10 percent per year, as shown in Figure
2. Meanwhile, in the U.S. Great Recession, the fall in the price level was much smaller by most accounts.
Inflation, as measured by Personal Consumption Expenditure for example, averaged at about 1.5 percent
from 2008 to 2015, when the Federal Reserve started raising rates, which is only -0.5 percent below its
2 percent inflation target. This is in sharp contrast to the 10 percent drop in inflation predicted by the
EW2003 parametrisation.

We now analyse the performance of the PLT and NGDPT rules once we calibrate the model to match a
smaller drop in inflation. For this experiment, we interpret22 inflation as the deviation of inflation from
target, as in Benigno, Eggertsson and Romei (2020).23

To parameterise the model, we calibrate κ and σ as in EW2003. Moreover, we assume the presence of a
cost push shock ut that is perfectly correlated with the natural rate of interest and thus follows the same
two-state Markov process we have already discussed.24 We then choose both rL as well as uL in order
to match a drop in inflation of -0.5 percent and output of -7.5 percent, thus taking on different values
relative to EW2003.25 A key assumption is that we suppose that policy was conducted according to the
Taylor rule in this period. This calibration strategy results in rL = −0.013875 and uL = 0.00136375.

The idea behind the calibration is that the shock that gave rise to the Great Recession – for example a
debt-deleveraging shock or a similar displacement originating in the financial sector – simultaneously
leads to a cost push and a drop in the natural rate of interest. While we model this in a reduced form,
it is also the explanation given for the lack of deflation during the Great Recession in Eggertsson and
Krugman (2012), who derive a fully specified microfoundation.26 Our approach is also consistent with
the estimated DSGE model in Christiano, Eichenbaum and Trabandt (2015).

As an alternative to choosing a cost push shock to match the limited drop in inflation, we experiment
with different values of κ, the slope of the New Keynesian Phillips curve (13), that generate the small
drop in inflation observed in the data. We show in Section 4.9 that our conclusions are robust to this
alternative strategy.

We also change the EW2003 calibration in another important respect. The objective of the central bank in
EW2003 is:

E0

∞

∑
t=0

βt[π̂2
t + λŶ2

t ] (25)

A well-known feature of the standard NK model is that it places virtually no weight on output in the
welfare objective of the government. In the EW2003 calibration, while the weight on the squared deviation
of inflation from target is one, the weight on output is only λ = κ/θ = 0.0025. Here instead we assume
equal weights on annual inflation and on output, so that λ = 1/16.

The reason for making this alternative assumption is two-fold: first, the Federal Reserve typically
interprets itself as adhering to a dual mandate, with inflation only being one component and some
measure of economic activity the other. These two objectives are typically put on equal footing. Thus,

22To stay consistent with the previous Section, we stick to the Eggertsson and Woodford (2003) calibration of β = 0.99 and π̄ = 0,
which implies a steady state real and nominal rate of 4%. Numerical results are almost unchanged if we set β = 0.995 and π̄ = 2%,
implying a real rate of 2% and a nominal rate of 4%.

23See Benigno, Eggertsson and Romei (2020) for the microfoundations of price setting for this interpretation.
24Equation (13) becomes π̂t = β Et π̂t+1 + κŶt + ut.
25The rationale for these values is discussed in Eggertsson and Egiev (2020).
26In that paper, a cost push is traced back to the effect of the debt-deleveraging shock on the labour supply of borrowers and

savers.
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one could argue that an equal weight better captures the behaviour of the Fed in practice. Second, recent
research suggests that once one incorporates realistic idiosyncratic shocks in firms’ pricing decisions,
then the weight on output relative to inflation increases substantially. Eggertsson and Inui (2020) show
how to microfound a loss function that puts equal weight on inflation and output (other examples in this
literature are Burstein and Hellwig 2008 and Nakamura et al. 2018).
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Figure 3: Selected rules and optimal commitment (OCP) under the baseline calibration with cost push shock.
Coloured lines are contingency 10 for output (Ŷt), inflation (π), the nominal interest rate (i), and nominal GDP (N̂).
The vertical axes report deviations from steady state, in percentage points (annualised figures). The vertical axis for
the nominal interest rate reports annualised percentage points. The list of acronyms is detailed in Table 1.

Figure 3 contrasts the optimal policy commitment (OCP) to the Taylor rule (TTR) under our main
calibration strategy, showing the contingency when the natural rate of interest reverts back to steady state
ten quarters after the shock hits (other contingencies look qualitatively similar). Assuming the Federal
Reserve follows a Taylor rule implies, by construction, a fall in inflation of 0.5 percent and a drop in
output of 7.5 percent. The optimal commitment, in contrast, results in only a 2 percent drop in output
and, instead of falling, inflation overshoots its target substantially throughout the duration of the shock.
The way the central bank accomplishes this is by committing to keeping the nominal interest rate at the
ELB by about six additional quarters after the natural rate normalises, a similar commitment as in the
original EW2003 example. Interestingly, this commitment now implies that during the period of the
shock inflation overshoots its target by about 3 percentage points and then mildly undershoots it once
the disturbance subsides. This is in sharp contrast to the EW2003 calibration, where there is no such
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overshooting of the inflation target when the shock hits. The reason for the different result is that the
central bank is now putting output deviation and inflation on equal footing in its objective. Accordingly,
it is more willing to tolerate higher inflation in order to achieve better output stabilisation.

Figure 3 also shows the outcome if the central bank follows a Price Level Target (PLT) of the form suggested
by EW2003 and a Nominal GDP Target (NGDPT). As the Figure suggests, this commitment does not
substantially improve the outcome relative to the Taylor rule. The reason is that the small decrease
in the price level in this numerical experiment leads to a trivial additional commitment to low future
rates once the shock has subsided. The key mechanism for why PLT succeeds in replicating the optimal
commitment in the EW2003 calibration lies in the shock generating enough deflation. This means that
once the disturbance is over the central bank does not raise the interest rate for a considerable period
of time, or until the price level recovers to the target. If there is very little fall in the price level, this
commitment loses most of its power. As it can be seen in the third panel, the nominal interest rate is
almost the same for the Taylor rule relative to the PLT or the NGDPT. Note that this problem is attenuated
by the fact that once a central bank commits to either of these two policies, the equilibrium drop in the
price level is even smaller than under the Taylor rule, thus implying an even smaller commitment to
future expansion once the shock reverts to steady state.

A stark assumption in the calibration of the Markov process is that the Federal Reserve followed a Taylor
rule during the crisis. This interpretation implies that the forward guidance done by the central bank
during the crisis did not substantially commit to keeping future rates lower as inflation started to recover.
By contrast, if we calibrate the model taking the other extreme – that policy was conducted under optimal
commitment – then the implied fall in the price level would have been larger under alternative policy
regimes, such as the Taylor rule, and thus price and nominal GDP targeting would have worked better.
We prefer our specification, however, as it more clearly highlights possible pitfalls of these targeting
strategies. They critically rely upon a sizeable fall in inflation in order to generate any meaningful
commitment to low future rates. In the presence of cost push shocks, or very low values for κ, there is no
reason to expect such a fall in the price level from the perspective of the model.

4.4 Cumulative Nominal GDP Targeting and Symmetric Dual-Objective Targeting

We now consider simple alternatives to the price level and nominal GDP targeting rules that better
replicate the optimal commitment policy.

The key problem with both rules was that if there is little decrease in the price level, neither rule implies
much accommodation once the shock giving rise to the ELB normalises. The optimal commitment,
instead, mandates that if there is a decrease in either output or the price level for the duration of the ELB,
then there should be accommodation (or make-up accommodation) once the crisis period is over, as seen
in the analytic derivation of the fully optimal targeting rule. In that derivation, the time varying target is
defined in terms of the weighted average of the price level and output. Moreover, if the target is missed,
the fully optimal rule suggests that the future target should be increased, thus generating expectations of
future accommodation.

Motivated by this observation, let us first consider the following simple targeting rule.27 Define the

27This rule is closely related to Reifschneider and Williams (2000), see Section 4.5.
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Figure 4: Selected rules and optimal commitment (OCP) under baseline calibration with cost push shock. Coloured
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cumulative deviations of nominal GDP from its trend as Γ̂t:

Γ̂t = P̂t + Ŷt + Γ̂t−1. (26)

This variable measures how much nominal GDP deviates from its target. Relative to previous nominal
GDP targeting proposals, such as those cited above, this variable keeps track not only of the size of
deviations of current nominal GDP from its trend, but it also accounts for past misses. The proposed
targeting rule is then to set the nominal interest rate so that the cumulative nominal GDP is on trend, i.e.
Γ̂t = 0, whenever possible. Otherwise, the central bank should set the nominal rate at its effective lower
bound, with the threshold for lift-off being that the cumulative nominal GDP target is reached again.
Critically, if this rule is credible, the public understands that if the Federal Reserve misses its nominal
GDP target, it is then committed to keeping the interest rate at zero until it has compensated for having
missed its target. Thus, if it were to miss on trend nominal GDP by 5 percent, it is committed to overshoot
trend nominal GDP by 5 percent going forward.

Figure 4 shows how this History-Dependent Nominal GDP Target (HD-NGDPT) does in the numerical
experiment. It does substantially better than PLT or NGDPT reported in Figure 3 (we provide a more
detailed assessment of this comparison in Table 2). The key to the success of this rule is that it prescribes
a substantial easing once the ELB is no longer binding on account of the exogenous shock, much as
prescribed by the optimal commitment.

As an alternative to keeping track of how nominal GDP misses its trend, we also consider the following:28

let us define an index (D̂t) that measures how inflation and real output deviates from trend:

D̂t = 4π̂t + Ŷt + D̂t−1 (27)

A targeting rule we coin Symmetric Dual-Objective Targeting Rule (SDTR) sets interest rates so that the
Dual Mandate Index D̂t is set to zero if possible but keeps the nominal interest rate at the ELB otherwise.29

Critically then, if a central bank following this reaction function misses its target, it will automatically
commit to a future accommodation.

Figure 4 shows the performance of this rule and illustrates that it does even better than the cumulative
nominal GDP target. Again, the key behind this success is that it implies a considerable easing once the
ELB is no longer binding, much beyond price or nominal GDP targets. PLT and NGDPT imply make-up
behaviour for past misses of the inflation target only. The two new rules show this feature as well, but in
addition they do the same for output: if there is a recession today, the central bank then commits to a
boom in the future. This type of commitment is particularly important when the price level moves by
small amounts.

Overall, the fact that SDTR does better than HD-NGDPT is not robust once we consider richer model
such as the FRBNY DSGE. Before getting there, however, we compare these rule to other well-known
policy rules and offer a more detailed assessment of their performance.
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Name
Acronym Rule

Taylor Rule
(TTR) iTTR

t = max
{

0, r̄ + π̄ + φππ̂t + φyŶt
}

TR with lag
(TTR-1) iTTR−1

t = max
{

0, r̄ + π̄ + φππ̂t−1 + φyŶt−1
}

TR with lead
(TTR+1) iTTR+1

t = max
{

0, r̄ + π̄ + φπ(Etπ̂t+1 + φyEtŶt+1
}

Interest Smoothing
(TTRS) iTTRS

t = max
{

0, φiit−1 + (1− φi)
(
r̄ + π̄ + φππ̂t + φyŶt

)}
Price Level Rule

(TTRP) iTTRP
t = max

{
0, r̄ + π̄ + φp P̂t + φyŶt

}
Nominal GDP Target

(NGDPT) iNGDPT
t

[
P̂t + Ŷt

]
= 0

Augmented Taylor Rule

(ATR)
iATR
t = max

{
0, iTR − αZt

}
, iTR

t = r̄ + π̄ + φππ̂t + φyŶt

Zt = Zt−1 +
(

iATR
t − iTR

t

)
Superinertial Taylor Rule

(SUP) iSUP
t = max

{
0, (1− φiSUP)(r̄ + π̄) + φiSUPit−1 + φππ̂t + φyŶt

}
Average Inflation Targeting

(AIT) iAIT
t = max

{
0, r̄ + π̄ + φππ̂t + φyŶt + φait

(
πNN

t − π̄
)}

Price level target
(PLT) iPLT

t
[
Ŷt +

κ
λ P̂t
]
= 0

History-Dependent NGDP
Target (HD-NGDPT) Γ̂tiHD−NGDPT

t = 0, Γ̂t = P̂t + Ŷt + Γ̂t−1
Symmetric Dual-Objective

Targeting Rule (SDTR) DtiSDTR
t = 0, D̂t = 4π̂t + Ŷt + D̂t−1

Table 1: Policy rules, names, and acronyms. πNN
t is average inflation over last NN quarters. P̂t is deviation of price

level from its (detrended) steady state value. Γ̂t and D̂t are defined in Equation (26) and (27).
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4.5 Comparison to Other Policy Rules

In this Section we compare the two policy rules we have suggested to several reaction functions that have
been proposed in the literature (Table 1). We summarise their performance in Table 2, using the welfare
criterion specified in Equation (25), as well as other measures. The first column shows the welfare loss
implied by these different rules, with the optimal monetary policy commitment normalised to one.

Of the rules considered, the two we have introduced in Section 4.4 are among the best performing ones,
together with the Augmented Taylor Rule (ATR) proposed by Reifschneider and Williams (2000) and
the Superinertial Taylor Rule (SUP) described in Rotemberg and Woodford (1999). Figure 5 depicts the
dynamic response of the simple two-equation model under these different reaction functions, alongside
two benchmarks: the Optimal Commitment Policy (OCP) and a Truncated Taylor Rule (TTR). We discuss
each one in turn.

The Augmented Taylor Rule is closely related to our two proposals. According to this rule, a cumulative
index (Zt) keeps track of how much the actual interest rate misses the interest rate suggested by the
standard Taylor rule due to the ELB. This reaction function then prescribes the interest rate to respond to
these cumulative misses at a rate α. In turn, this implies that if the ELB is binding, future rates will be
lower than predicted by a standard Taylor rule to make up for previous deviations from target. This is a
similar make-up feature to the one characterising the fully optimal commitment rule in EW2003, as well as
our proposed rules HD-NGDPT and SDTR.

The Superinertial rule of Rotemberg and Woodford (1999) generates a similar commitment to low rates for
a prolonged period of time, but for different reasons. As shown in Table 1, it has a lagged interest-rate
term appearing in an otherwise standard Taylor rule. The coefficient on this lagged interest rate, however,
is greater than one – hence the name super-inertial. This implies not only that interest rates drop very
slowly in reaction to the shock, as shown in Figure 5, but also that they increase equally sluggishly once
the disturbance reverts. This generates exactly the type of commitment needed. Interestingly, even
though this rule does not prescribe an immediate drop in the nominal interest rate in reaction to the shock
– as the optimal commitment would mandate – it still outperforms most of the other policy functions
under consideration.

In line with the finding of Reifschneider and Wilcox (2019), we can also document how a Taylor-type
rule reacting to Average Inflation (AIT) is sub-optimal at best, with a welfare loss comparable to a price
level or nominal GDP target. Again, this is mostly due to the limited drop in inflation that prevails in this
parametrisation of the model. This policy rule is arguably similar to the policy regime adopted by the
Federal Reserve in 2020.

Appendix A.6.1 shows the results if we do not impose the ELB and the nominal interest rate is allowed to
go negative. Our two proposed rules are still among the best performing ones. There are two notable
observations: first, NGDPT and HD-NGDPT overlap in this case. The central bank can fully stabilise
nominal GDP, and thus there will never be a cumulative deviation to be made up for; second, the price
level targeting rule PLT performs very well. This should not come as a surprise, as Eggertsson and
Woodford (2003) show that optimal commitment is identical to PLT if the effective lower bound is never
reached.

28The rule is closely related to Reifschneider and Williams (2000), see Section 4.5, and rules that feature a lagged interest rate, as
in Taylor and Williams (2010) or recently discussed in Kiley and Roberts (2017).

29The inflation gap is multiplied by 4 to make sure that there is equal weight on annualised inflation and output.
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Figure 5: Dynamic response to a natural interest rate shock and a correlated cost push shock in a simple two-equation
NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation by 0.5%
constant under a Truncated Taylor Rule (TTR). The natural interest rate reverts to the absorbing state after 10 quarters
(10th contingency). The list of acronyms is detailed in Table 1. The parametrisation is reported in Table A.2. Paths for
additional rules reported in Table 1 are shown in Section A.7.1 in the Appendix.
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In the next sections we assess the robustness of these conclusions to different assumptions in terms of
size of the inflation response, its source, choice of policy parameters, as well as how our results transpose
to a more sophisticated macroeconomic model.

Welfare Loss E0[τ + kτ − T̃] Volatility Ŷ Volatility π Volatility i Impact Ŷ Impact π
(1) (2) (3) (4) (5) (6) (7)

OCP 8.252 10−4 15.257 5.356 10−3 4.904 10−4 1.411 10−3 −2.208 3.059

PANEL A: baseline rules

OCP 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TTR 3.800 0.655 9.335 0.022 0.657 3.364 −0.144
HD-NGDPT 1.568 1.099 3.563 0.207 1.094 1.818 0.502
SDTR 1.194 0.703 1.514 0.975 0.716 1.400 0.936
ATR 1.404 0.655 2.603 0.586 0.666 1.842 0.711
SUP 1.352 0.000 1.896 0.980 0.426 1.820 0.897

PANEL B: additional rules

PLT 3.294 0.655 8.118 0.000 0.657 3.145 −0.018
NGDPT 3.267 0.655 8.054 0.000 0.657 3.132 −0.011
TTRP 4.183 0.000 10.301 0.007 0.199 3.894 −0.136
TTRS-1 1.520 0.000 2.671 0.734 0.363 2.189 0.759
TTR-1 1.835 0.649 4.177 0.236 0.653 2.451 0.454
AIT 3.306 0.655 8.149 0.000 0.657 3.150 −0.021
FLFG 3.499 0.807 8.596 0.020 0.814 2.752 0.042

Table 2: Some metrics for selected interest rate rules in the simple two-equation NK model in the presence of a
natural rate shock and a correlated cost push shock. All rows except the first show values normalised with respect
to the optimal commitment policy (OCP, first row). Column (1) reports the welfare loss computed from a quadratic
loss function (Equation 25) for the central bank with equal weights; Column (2) displays the unconditional expected
duration of the Effective Lower Bound (regimes 1 and 2); Columns (3)-(5) report a summary measure of deviations of
the endogenous variables from target, computed according to Equation (A.6); finally, Columns (6) and (7) show the
response on impact, in annual percentage points, of the output and inflation to a natural interest rate shock and a
correlated cost push shock such that output falls by 7.5 percent and inflation by 0.5 percent under a Truncated Taylor
Rule (TTR). Rule calibration reported in Table (A.2). The model is calibrated with the standard EW2003 parameter
values reported in footnote 21. The list of acronyms is detailed in Table 1.

4.6 Forward Guidance, the Role of Uncertainty and Time Dependent Policy Com-
mitments

The toolkit allows us to evaluate the robustness of different policy strategies in the presence of uncertainty.
This is particularly helpful to clarify the difference between Time-Dependent Forward Guidance, under
which the central bank communicates a time period when it expects the ELB to be binding, and State-
Contingent Forward Guidance, where the monetary authority stipulates economic conditions – or thresholds
– which once satisfied allow the interest rate to be lifted from the ELB.

A popular policy strategy followed by policy-makers shortly after the Financial Crisis of 2007-08 – aimed
at providing additional monetary stimulus – was to stipulate that the policy rate would remain at zero
until a predetermined calendar time. The Bank of Canada, for example, announced on 21 April 2009 that
its policy rate would remain at zero until the end of the second quarter of 2010. The Federal Reserve
initially pursued a similar time-dependent strategy by stating that rates would stay low for ”some time”
(December 2008), for an ”extended period” (March 2009) and finally ”at least to mid-2013” (August 2011).

While the Bank of Canada and the Federal Reserve did their best to communicate that these time
commitments were conditional on incoming data, a common criticism was that the markets interpreted
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this as a binding commitment, regardless of actual trajectory of the economy. This is a point raised by
Woodford (2012).

One interpretation of time-dependent forward guidance is that it corresponds to the optimal fixed
duration of the zero interest rates determined at time t = 0, what we call the optimal Fixed-Length Forward
Guidance (FLFG). Under FLFG, the monetary authority announces that, in response to a negative natural
rate shock, it holds the nominal rates at zero until a fixed calendar date ν, after which the policy will
return to a standard Taylor rule. This corresponds to the following policy rule for nominal rates

it =

0 for t ≤ ν

max(0, r + φππt) otherwise
(28)

Figure 6 shows the optimal time-zero FLFG assuming a deterministic process for the natural rate of
interest and contrasts it to the optimal policy commitment. As the fFigure reveals, FLFG approximates
OCP relatively well by approximating a delayed lift-off of the policy rate.

As stressed by Woodford (2012) however, a key problem with time-dependent forward guidance is that it
does not allow the central bank to flexibly react to economic conditions, i.e. to the shocks that brings the
economy to the ELB in the first place. Since the toolkit can incorporate a stochastic duration of the ELB
episode, it is ideal to clarify this point.

Figure 6 compares FLFG with OCP assuming the two-state Markov process analysed in previous sections.
As evident from the Figure, FLFG now does a much poorer job in replicating the OCP when the duration
of the shock is uncertain. The Figure shows the realisations for output, inflation, interest rates and the
natural rate of interest, assuming the shock reverts to steady state in period t = 10, t = 16 and t = 22. It is
only for the 16th contingency that the duration of the ELB under OCP and FLFG coincide. If the natural
rate reverts earlier (e.g. in period t = 10), then FLFG implies the ELB binds for longer than under OCP,
while if the natural rate stays low for longer (e.g. period t = 22), then FLFG does not imply sufficient
monetary stimulus since the central bank will raise rates as soon as the shock subsides.

We also contrast FLFG to the policy rules in Table 2. The optimal FLFG does worse than all other reaction
functions, with the exception of the Taylor rule (TTR). The reason is that this type of commitment does
not adjust the duration of the policy accommodation in reaction to shocks.

4.7 Communicating State-Contingent Policy Rules

One major rationale for using a time-dependent policy commitment is that it is easy to explain and
communicate it to the public. Communicating a state-contingent policy rule, however, need not be much
more complex.

The Federal Reserve’s formulation of a threshold strategy in December 2012 is an example of a state-
contingent policy commitment, that replaced the Fed’s time-dependent policy. Under the new formula-
tion, the Federal Reserve announced in its FOMC statement that it would

”keep the target range [. . . ] at 0 to 1/4 percent and currently anticipates that this [. . . ] will be
appropriate at least as long as the unemployment rate remains above 6-1/2 percent, inflation between
one and two years ahead is projected to be no more than half a percentage point above the Committee’s
2 percent longer-run goal.”
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Figure 6: Optimal Fixed-Length Forward Guidance (FLFG, red dot-dash line) under alternative solutions for the
two-state Markov natural interest rate disturbance: stochastic (Panel a, left) or deterministic process (Panel b, right).
Lines represent impulse responses for output (Ŷ), inflation (π), the nominal interest rate (i) and the natural rate (rn).
Panel (a) shows contingency 10, 16 and 22 for each policy rule. At contingency 16, the central bank moves away
from the ELB both under optimal commitment (OCP) and fixed-length forward guidance (FLFG). The size of the
Markov shock process is calibrated to achieve a drop in output in the initial period of -7.5% under a Taylor rule (blue
dashed line). The purple solid line reports the optimal policy under commitment (Ramsey plan). The vertical axis for
inflation and output reports deviations from steady state, in percentage points (annualised figures). The vertical axes
for interest rates reports annualised percentage points.

28



This type of commitment resembles much more closely the fully optimal state-contingent policy.

Consider the following communication strategy:

1. The central bank announces that it will keep the interest rate at zero until a particular quantitative
threshold, or targeting criterion, is met for inflation and output, similar to its policy in 2012 (further
specified below). This gives the market a way of forecasting the duration of the ELB, obtained by
predicting the variables contained in the target criterion;

2. Once this threshold is met and the ELB is no longer binding, the interest rate is set freely to hit the
pre-specified target criterion.

As shown by EW2003, optimal commitment is implemented in the two-equation model we have sketched
out if the quantitative threshold is specified using as a targeting criterion the index P̃t, which is a weighted
average of the price level and output as defined in Equation (20). The threshold this index needs to reach
for lift-off is denoted by P̂∗t , specified in Equation (21). Observe that the threshold in period t + 1 can be
computed at time t, thus in each period the monetary authority can state what the threshold will be for a
lift-off from the ELB going forward, based upon variables observed in period t.

As discussed in EW2003, a major advantage of this targeting rule is that its formulation is independent
from the stochastic process for the natural rate of interest and the cost push shock. What is required of
the policy-maker is to know the structural parameters of the model and values for output and the price
level. The policy communication of the Federal Reserve in 2012 had this exact feature.

Our proposed make-up strategies HD-NGDPT and SDTR can be communicated along the same lines. The
only difference is that the targeting criterion is now Γ̂t = 0, where this variable is defined in Equation
(26). For HD-NGDPT it is D̂t = 0, where the targeting variables is defined in Equation (27).

To be more specific, consider HD-NGDPT and let a shock hit the economy at t = 1. In this period, even
if the central bank cuts the interest rate to the ELB, it is unable to achieve its nominal GDP target, i.e.
N̂1 = P̂1 + Ŷ1 < 0. At time t = 1, the policy-maker announces that the interest rate will remain at zero at
least until nominal GDP reaches the threshold N̂∗2 given by:

N̂∗2 ≡ −Γ̂1 = −P̂1 − Ŷ1 > 0. (29)

which exactly compensates for the shortfall in the previous period. In other words, the central bank
commits to make up for the drop in nominal GDP from period t = 1 by overshooting in period t = 2.
Consider now the scenario in which the shock remains in the low state also in period t = 2. The monetary
authority then announces that the interest rate will remain at zero at least until nominal GDP reaches the
threshold:

N̂∗3 ≡ −Γ̂2 = −P̂2 − Ŷ2 + N∗2 > 0, (30)

thus compensating for its past two misses by overshooting in future periods. As in the case of the
EW2003, the advantage of this type of targeting rule is that its implementation does not depend upon the
stochastic nature of the underlying shock, but rather exclusively on observable variables. Moreover, the
expected duration of the ELB can automatically be inferred by market participants: the policy acts as an
automatic stabiliser. Thus, for example, in the case of a fresh adverse demand shock the market will infer
that the threshold is further away from being satisfied. Consequently, it will adjust its expectations to
reflect a longer duration at the ELB, and in turn generate an additional monetary stimulus to counteract
the shocks without the need for new announcements by the monetary authority. By contrast, in case of a
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time-dependent commitment the central bank would need to reformulate its policy each time in response
to shocks, and the size of the adjustment would depend on the stochastic properties of the underlying
disturbance.

4.8 Odyssean and Delphic forward guidance

Another illustration of the usefulness of accounting for uncertainty is motivated by the debate about the
economic effects of central bank forward guidance. Campbell et al. (2012) distinguish between Odyssian
and Delphic forward guidance: the former refers to the standard theory about forward guidance, where
the central bank makes announcements about future actions and it is believed to be credible. The latter
refers to the idea that forward guidance statements – for a given economic fundamental and monetary
policy stance – may instead change agents’ beliefs about future economic fundamentals.

Allowing for Delphic forward guidance it can happen that a central bank announcement that is supposed
to be expansionary – such as keeping rates lower for longer – has in fact a contractionary effect, because
private-sector agents revise downwards their beliefs about economic fundamentals.

Campbell et al. (2012) can be placed in a broader literature on the effects of information in central-bank
policy. Another recent paper in this literature is Nakamura and Steinsson (2018). The information effect in
their model analysis captures information about the state of the economy arising in response to surprise
interest rate cuts or increases by the policy-maker. The underlying mechanism is the same: policy can
affect private sector beliefs about economic fundamentals.

We conduct a small experiment that illustrates how we can coherently illustrate the effect of both types
of forward guidance with the help of our toolkit. In this case, the main benefit of the toolkit is that it
provides a framework where one can make a meaningful distinction between expected and realised
duration of the ELB episode. In a deterministic setup, the two concepts coincide. This is not the case in
the toolkit: here we can change the expected duration at the ELB separately from the realised duration.

Consider the following deterministic process for the natural rate of interest. It turns negative in period
t = 1 and returns back to steady state in period t = 10. Let us allow however for the possibility that
while the actual evolution of the economy will always feature a reversal of the shock in period t = 10,
agents believe that there is a fixed probability (µb) in each period from t = 2 to t = 9, that the shock
reverts to steady state in the following period.

We consider two scenarios that increase the agents beliefs about the duration at the ELB by one period: in
the first, the Odyssean forward guidance, we impose the following rule:

it =

0 for t < τ + 1

r + φππt + φyŶt otherwise
(31)

The central bank announces to keep the interest rate low for an additional period, i.e. one more quarter
than prescribed under the standard Taylor rule (TTR); this is an expansionary policy.

In the second scenario – where we implement Delphic forward guidance – we adjust the agents beliefs
about the reversal probability (µb) to obtain the same increase of one period of the expected duration of
the ELB. In order to obtain a longer duration, µb has to increase. This is a more contractionary shock than
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before. The two experiments are meant to separately study the effects of policy (Odyssean) and the effect
of beliefs about fundamentals of the economy (Delphic).

Results are shown in Figure 7, the benchmark calibration is the same as before. The Odyssian forward
guidance results in a increase in output, cutting the output contraction almost by a half. Meanwhile, the
Delphic forward guidance leads to a sharp output contraction.

This experiment highlight the critical role of beliefs in the model. It also illustrates that the toolkit allows
for the possibility of shifting beliefs without a change in fundamentals, which remain pinned down by
the deterministic path for the natural rate of interest.
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Figure 7: Odyssean vs. Delphic forward guidance (FG) experiment in simple two-equation NK model. Odyssean
FG features commitment of central bank to one additional periods at ELB relative to Taylor rule (TTR). Delphic FG
features lower transition probability of shock, 1− µb. Both scenarios have expected duration at ELB of 10 quarters,
TTR has expected duration at ELB of 9 quarters. The coloured lines represent contingency 10 for output (x), inflation
(π) and the nominal interest rate (i). Calibration is the same as in Section 4.3, achieving a drop in output in the initial
period of -7.5% and a fall in inflation to −0.5% under discretion in response to a natural rate shock and a perfectly
correlated cost push shock (TTR, blue solid line). Transition probability under Delphic FG is µb = 0.09091. The vertical
axes for inflation and output reports deviations from steady state, in percentage points (annualised figures). The
vertical axis for the interest rate reports annualised percentage points.

4.9 Robustness Checks

In the previous Sections we explored the performance of our novel policy rules, and we found that they
improve upon several alternatives documented in the literature, such as PLT and NDGPT. We did so in
an environment in which inflation on impact was slightly below steady state under a Taylor rule (-0.5
percent). This reflects what the U.S. economy experienced during the Great Recession of 2008.

We repeat the experiment with different parametrisations of the natural rate and cost push shock to have
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lower (0 percent) or higher (-2 percent) deflation on impact under TTR. Our results are robust to both
scenarios – namely that HD-NGDPT and SDTR fare relatively well when compared to PLT and NGDPT.
In particular, the welfare loss under HD-NGDPT (SDTR) is approximately 1.6 (1.2) times as large as in the
optimal commitment policy. On the contrary, the welfare loss in both PLT and NGDPT is at least three
times as large as in OCP. In Sections A.7.2 and A.7.3 in the Appendix we report the detailed performance
assessment of our candidate rules, as well as plots for the impulse responses.

In the experiments so far the inflation response has been quite weak due to the presence of a cost push
shock, perfectly correlated with the drop in the natural interest rate. An alternative theory for why
inflation was so stable in the U.S. Great Recession points to price rigidity. We explore this avenue by
repeating the exercise with no cost push shock, but with a degree of price rigidity such that, under TTR,
inflation again drops to -0.5 percent on impact. We refer the reader to the Appendix (Section A.7.4) for
welfare analysis and dynamic responses. Our two rules remain very good compared to the optimal policy
commitment. On the other hand, strategies that were comparable to ours, ATR and SUP, now tend to fare
significantly worse than OCP.

The last robustness check we perform involves the policy parameters: we choose them to maximise
welfare according to Equation (25).30 The results are in Table A.8 in the Appendix (Section A.7.5); optimal
parameters are reported in Table A.2. In this setting, only ATR and SUP – rules that display welfare losses
comparable to ours – improve slightly in terms of welfare. All other optimised policies are virtually
unchanged.

5 Medium-Scale DSGE Model

The results discussed so far were derived under a simple two-equation NK model. In this Section we
show that the findings generalise to a medium-scale DSGE model and they are not an artefact of the
simple structure of the baseline exercise. Rules that imply substantial make-up behaviour or feature inertia
in the path of interest rates show the best outcome. Our two proposed policies, HD-NGDPT and SDTR,
outperform all alternative candidates by implying substantial stimulus compared to a simple Taylor
rule. As before, a price level target and nominal GDP target do not perform as well in an environment
with a relatively stable prices. This Section also serves to illustrate how our toolkit can easily handle
medium-scale models.

For this exercise, we implement the FRBNY DSGE as outlined in Del Negro, Giannoni and Patterson
(2013). We treat the model as a reasonable description of the U.S. economy and simulate the Great
Recession. In all our Figures, we plot the data against our simulations. Figure 8 shows the pre-crisis trend
and the actual path for the U.S. nominal GDP and price level. We calibrate the model to match a similar
decline of both variables as observed in the data. For the calibration, we use the policy rule proposed
and estimated in Del Negro, Giannoni and Patterson (2013) as the one prevailing in the data-generating
process (Equation A.7).31 This gives us the ideal testing grounds for the reaction functions introduced in
the previous section.32

As an illustration, we assume that the shock that gave rise to the Great Recession reverts back to steady
state right around the time the Federal Reserve started increasing interest rate in 2015. It is clearly an

30Targeting rules are not re-parametrised.
31In a medium-scale model like the FRBNY DSGE featuring many state variables, optimal commitment is cumbersome to derive.

We therefore take the FRBNY policy as our baseline.
32Section A.5 in the Appendix contains details on the model and its calibration.
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exaggeration to assume that the shock fully reverts back to it steady state at that time. We are willing
to contemplate this scenario because it makes the thought experiment straightforward to interpret and
comparable to our previous simulations.
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Figure 8: U.S. Gross Domestic Product (in Billions of Dollars) and Personal Consumption Expenditures ex. Food
and Energy (Chain-Type Price Index, 2012=100). All series are in log-points and seasonally adjusted. The dashed line
represents a linear trend estimated in the pre-Great Recession period (2000-Q1 to 2007-Q2). Data from the U.S. Bureau
of Economic Analysis. For details on the data source see Footnote 39.

Figure 9 compares the FRBNY policy rule with the four targeting rules, as well as with the data. We see
that PLT and NGDPT do not improve significantly upon the FRBNY Rule, which is consistent with our
experiment in the simple model. The reason as before is that the small drop in the price level does not
generate strong enough of a commitment to low future rates. The FRBNY Rule implies 28 quarters at the
ELB, as observed in the data. Relative to this, PLT and NGDPT only command five additional quarters
at the lower bound after the shock reverts to the steady state. This is in stark contrast to our newly
proposed rules: HD-NGDPT (SDTR) implies 16 (15) additional quarters at the ELB relative to the baseline,
postponing the lift-off from zero well into the year 2019. This aggressive policy improves outcomes
considerably: while output drops to -8.5 percent under the FRBNY Rule, and still to -6.3 percent (-6.0
percent) under PLT (NGDPT), the maximum drop in output under HD-NGDPT (SDTR) is -3.6 percent
(-3.1 percent). In addition, we should note that output hits its trough early, and recovers thereafter. This
improvement is achieved at the expense of a modest overshoot of inflation relative to the other rules.

We can assess the costs in term of output loss associated with the Federal Reserve’s inability to flatten the
path of the expected Federal Funds Rate in the early stages of the U.S. Great Recession. To this end, we
compare the realised output loss implied by the model to trend output. For the time period 2007-Q3 to
2020-Q1 the FRBNY Rule implies an average annualised output gap of -5.07 percent, see Column (8) in
Table 3. Our proposed rules reduce this number considerably: -0.34 for SDTR and -1.01 for HD-NGDPT.
This means that the cumulative output gap since the Great Recession would have been almost closed by
the first quarter of 2020 had the Federal Reserve implemented the SDTR policy rule. We also report the
model-implied price level in 2020-Q1, see Column (9) of Table 3. Under the FRBNY Rule, the price level
is still 3.5 percent below trend in 2020-Q1, while HD-NGDPT closes the price level gap (0.4 percent above
target) and SDTR overcompensates (4.2 percent above target). While a price level target (PLT) closes
the price level gap by 2020-Q1, it does not provide enough stimulus, and implies a rather large average
annualised output gap of -3.74 percent.

Notably, we calibrate our model such that we exactly hit the relatively low expected duration of the ELB
binding for four quarters at the early stages of the Great Recession, as found in surveys of professional
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Figure 9: Dynamic response to a preference shock and a correlated cost push shock in FRBNY model, under
different policy rules. Dotted red line is data. The two-state Markov shocks switch to low state in Q4-07 and revert
to the absorbing state after 32 quarters (32nd contingency). The vertical axes for Ŷt, P̂ and N̂ report deviations from
detrended steady state, in percentage points (annualised figures). The vertical axes for π and i report annualised
percentage points. The horizontal axis shows quarter and calendar year. See Section A.3 for details on data and Section
A.5.2 for calibration. The list of acronyms is detailed in Table 1.
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forecasters. This is one benefit of the stochastic structure of the toolkit: we can simultaneously target
moments of output loss and expectations about the duration of the ELB episode.

Our analysis suggests that had the Federal Reserve been able to credibly announce and implement HD-
NGDPT or SDTR, the path of the Federal Funds Rate expected by market participants would have been
considerably flatter (compare to Figure A.20a in the Appendix). The expected duration at the ELB would
have been about three times higher (12.9 and 13.4 quarters for HD-NGDPT and SDTR, respectively).33

This change is solely due to a difference in policy, as the fundamental shock to the economy is held
constant.

Table 3, Figures 10 and A.17 show the results for the full set of reaction functions.34 Comparing the welfare
loss across rules, we see that HD-NGDPT and SDTR outperform all others. Our proposals generate a loss
that is only a third of the one under the FRBNY Rule, since they imply substantial additional stimulus.
Indeed, the expected duration at the ELB (Column 2 in Table 3) is much longer than any alternative
proposal. Of the remaining policies, ATR and SUP again show good performance and come the closest to
our two candidate rules. Appendix A.6.2 discusses the case of the ELB constraint not being imposed.
Our two proposed rules are again among the best performing ones.

33These numbers are different than the ones reported in Column 2 in Table 3 because in this section we condition on having
reached the ELB. This makes the numbers comparable to the survey forecast of four quarters at the ELB. In Table 3 we report the
unconditional expectation, i.e. from the point in time when the shock hits. Both metrics can differ because of the presence of regime
0.

34Appendix A.7.6 shows impulse response functions and additional variables for all rules.
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Figure 10: Dynamic response to a preference shock and a correlated cost push shock in FRBNY model, under
baseline policy rules. Coloured lines show paths for output (Ŷt), inflation (π), the nominal interest rate (i), and nominal
GDP (N̂). Dotted red line is data. The two-state Markov shocks switch to low state in Q4-07 and revert to the absorbing
state after 32 quarters (32nd contingency). The vertical axes for Ŷt and N̂ report deviations from detrended steady state,
in percentage points (annualised figures). The vertical axes for π and the i report annualised percentage points. The
horizontal axis shows quarter and calendar year. See Section A.3 for details on data and Section A.5.2 for calibration.
The list of acronyms is detailed in Table 1. FRBNY Rule refers to Equation (A.7).
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Ŷ

Im
pa

ct
π

R
ea

liz
ed

av
g

Ŷ
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6 Conclusions

We provide a toolkit to solve DSGE models that involve occasionally binding constraints. The solution
method generalises that of Eggertsson and Woodford (2003) and exploits the properties of a two-state
Markov process for the exogenous disturbances. The toolkit performs well even in the presence of a large
number of state variables and features a tractable stochastic structure. This modelling assumption is
particularly relevant in the analysis of macroeconomic problems where uncertainty is important, as in
the case of forward guidance.

We use the toolkit to study the performance of policy rules in economies that experience the ELB. Our
two newly proposed strategies, a History-Dependent Nominal GDP Target and a Symmetric Dual-Objective
Target, consistently outperform most rules documented in the literature, especially reaction functions
based on price-level or nominal-GDP targeting. We show that the latter two lack sufficient stimulus
during economic downturns characterised by small drop in the price level, as experienced in the recent
U.S. Great Recession episode. In addition, our rules are easy to communicate to the public in the form of
a state-contingent strategy, and are robust to different crisis scenarios.

Finally, we evaluate their performance in a medium-scale DSGE model for the U.S. economy. Our analysis
suggests that our make-up strategies – if credibly conveyed to market participants by the Federal Reserve –
would have resulted in a much longer expected duration at the ELB after the Great Recession, and in an
80-percent reduction in lost output. Similarly, the Fed’s monetary policy strategy outlined in the recently
revised Consensus Statement (Powell 2020) would have reduced the output contraction by more than a
quarter.

38



References

Adam, Klaus, and Roberto M. Billi. 2006. “Optimal Monetary Policy under Commitment with a Zero
Bound on Nominal Interest Rates.” Journal of Money, Credit and Banking, 38(7): 1877–1905.
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A Appendix

A.1 Proof of Lemma 1

Proof. The system can be written as:[
A1 A2

A3 A4

] [
EtZt + 1

Pt

]
=

[
B1 B2

B3 B4

] [
Zt

Pt−1

]

[
A1 A2 −B1 −B2

A3 A4 −B3 −B4

] 
EtZt+1

Pt

Zt

Pt−1

 =

[
0
0

]

[
A2 −B1 −B2 A1

A4 −B3 −B4 A3

] 
Pt

Zt

Pt−1

EtZt+1

 =

[
0
0

]
(A.1)

Let the row reduced echelon form of

[
A2 −B1 −B2 A1

A4 −B3 −B4 A3

]
be

[
I 0 −C1 −C2

0 I −C3 −C4

]
The system will then be:

[
I 0 −C1 −C2

0 I −C3 −C4

] 
Pt

Zt

Pt−1

EtZt+1

 =

[
0
0

]

[
Pt

Zt

]
=

[
C1 C2

C3 C4

] [
Pt−1

EtZt+1

]
(A.2)

At time t + 1, recall that j ≡ kτ − (t− τ), we know that:

Pt+1 = G2,j−1Pt

Zt+1 = D2,j−1Pt
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It follows that EtZt+1 = EtD2,j−1Pt = D2,j−1Pt. By substituting this result in (A.2) we can solve the
system: [

Pt

Zt

]
=

[
C1 C2

C3 C4

] [
Pt−1

EtZt+1

]
[

Pt

Zt

]
=

[
C1Pt−1 + C2D2,j−1Pt

C3Pt−1 + C4D2,j−1Pt

]
[

Pt

Zj

]
=

 (
I − C2D2,j−1)−1 C1Pj−1(

C3 + C4D2,j−1 (I − C2D3)−1 C1

)
Pt−1


[

Pj

Zj

]
=

[
G2,jPt−1(

C3 + C4D2,j−1G2,j) Pt−1

]
(A.3)[

G2,j

D2,j

]
=

[ [
I − C2D2,j−1]−1 C1

C3 + C4D2,j−1G2,j

]
(A.4)

A.2 Code Setup

In this Section we explain how to set up codes for the toolkit for the New Keynesian model under OCP
as explained in Section 4. The solution algorithm is generated in three functions that have to be run
sequentially. The essential inputs of those functions are (1) the matrices that define the model; (2) a
parameter structure that is described below; (3) a configuration structure that is described below. There
are several optional inputs that we explain at the end of the Section.

A.2.1 Variables and Matrices

Our toolkit requires the model to be cast in the form specified Equation 5. In addition, a specific ordering
of variables and equations is necessary for the code to recognise state variables, shocks and the equation
subject to the occasionally binding constraint. In particular, the user should order elements in the vector
ξt such that the jump variables come first, the nominal rate should be between jump variables and
predetermined variables, predetermined variables should follow, and finally shock variables should be
at the end of the vector.35 Furthermore, the order of rows in the matrices A and B must satisfy that the
last equation is the one that is slack when in regimes 1 and 2 (e.g. a policy rule for the central bank), and
the block preceding it is made by as many identity rows as there are shocks (i.e. equations in the form
Etut+1 = ut).

As an example, consider Equations (12)-(18) in the absorbing state, where (16) is binding. The system can

35Note that if the system has constants, one can implement them in 2 ways. First, the user could define a predetermined variable –
along with its own initial value – that never change value across time. A second way is to increase the shock vector to include a
component that does not change value across regimes.
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be written as A Etξt+1 = B ξt,36 where ξt ≡
[
Ŷt πt it φ1,t−1 φ2,t−1 rn

t−1 ut
]′ and

A =



1 σ 0 0 0 σ 0
0 β 0 0 0 0 1
0 0 0 −1 κ 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0


, B =



1 0 σ 0 0 0 0
−κ 1 0 0 0 0 0
λ 0 0 − 1

β 0 0 0

0 1 0 − 1
β σ −1 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


(A.5)

A.2.2 Parameters structure

The parameter structure (we name it param) needs to contain the following elements.

1. A scalar element µ, equal to the Markov probability described in the text.

2. Two vector elements sh and sl equal to the values of the two-state Markov process in the absorbing
and crisis states. The order needs to be the same as in the vector ξt.

3. A scalar element NS, that is equal to the number of state variables in ξt, including the exogenous
shocks.

A.2.3 Configuration structure

The configuration structure (we name it config) needs to contain the following elements.

1. A scalar element τmax, equal to the time at which the Markov shock reverts to its absorbing state
with probability 1, conditional on being in the crisis state at τmax − 1.

2. A scalar element maxlength2, equal to the maximum length of regime 2. This is a shortcut to save
computing time. The toolkit will warn the user if regime 2 requires a higher value for maxlength2.

3. A scalar element bound, equal to lower bound in the inequality constraint, e.g. 0 for the zero lower
bound.

4. A scalar element mono. mono=1 means toolkit will run under the assumption that the vector k
represents a monotone function.

A.2.4 The general setup

The user should construct the elements described above and set the code as follows.

[D_3,G_3,D_3a] = regime3(AAA,BBB,param);

[D_2,G_2] = regime2(AAA,BBB,D_3a,param,config);

[D_1,G_1, ResM, max_k,k,T_tilde] = ...

regime1(AAA,BBB,D_3a,D_3,D_2,G_3,G_2,param,config);

impulseresponse

36We suggest to use AAA and BBB in place of A and B in order to avoid coding conflicts with the inputs in other scripts.
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A.2.5 The function regime3.m

The function regime3.m takes as inputs the matrices AAA and BBB, as well as the parameters structure
param.

[D_3,G_3,D_3a] = regime3(AAA,BBB,param);

This function provides transition matrices that are then used in the other functions.

A.2.6 The function regime2.m

The function regime2.m takes as inputs the matrices AAA and BBB, the parameters structure param,
the configuration structure config, as well as one output (D3a) from the function regime3.m.

[D_2,G_2] = regime2(AAA,BBB,D_3a,param,config);

This function provides transition matrices that are then used in the function regime1.m.

A.2.7 The function regime1.m

The function regime1.m takes as inputs the matrices AAA and BBB, the parameters structure param, the
configuration structure config, as well as the output from the functions regime3.m and regime2.m.

[D_1,G_1, ResM, max_k,k,T_tilde] = ...

regime1(AAA,BBB,D_3a,D_3,D_2,G_3,G_2,param,config);

This function provides a 3 dimensional matrix ResM, a scalar maxk, the vector k, the scalar T̃, and the
transition matrices in regime1.m.

The dimensions of ResM are time, variables, and contingencies. For instance, the element ResM(5, 1, 8)
contains the value of the variable in position 1 in ξt, at time 5, for contingency 8.

The vector k is a vector that links contingencies and their respective duration of regime 2. maxk is the
maximum value across k, and the scalar T̃ is the period at which regime 1 starts.37

Optional inputs There are several optional parameters to regime1.m. The user can choose to have
any combination of the following:

Option Input Description

verbose 0 (default) | 1 display real-time diagnostics from the search algorithm
k input vector impose arbitrary k
T tilde input scalar input a value for T̃
R0 search 0 | 1 (default) search for T̃

The input of a vector k shall be taken with some caution. Notice that if k has too low entries (e.g. there is
too little stimulus), the toolkit will force k to change because regime 3 would feature a violation of the
inequality constraint. On the other hand, shall one want to impose a k that is large enough (for instance

37To be precise, the scalar T̃ is the period at which the regime that follows regime 0 starts. In most cases this will be regime 1.
However, it can be the case that the code switches to regime 2 or 3 immediately after regime 0. This is for example the case if the
ELB is never binding.
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in the case of a fixed horizon forward guidance experiment), the user should be aware it is necessary to
shut down the search for T̃ at the same time to fulfil the purpose. For the third optional input, an issue
arises when the user inputs a value for T̃ that is too large. The toolkit will not find a solution because of
the algorithm.38 To avoid this, one should shut down the search for T̃ as well. In this case the toolkit
will give a solution that features the value of T̃ chose by the user (otherwise the default value is 1). Note
that this solution may violate the inequality constraint in regime 0, exactly because the algorithm for the
search of T̃ is shut down. Shutting down the regime 0 algorithm, and setting T tilde input to τmax

corresponds to the case of the ELB never binding.

A.2.8 The script impulseresponse.m

This script generates impulse response functions as weighted averages of the evolution of each variable
across all contingencies, weighted by the ex-ante probability of the shock reverting to the absorbing state.
The script generates a two-dimensional matrix, where each row is a period and column is a variable.
Notice that the matrix ResM contains variables in levels, so percentage point variations can be obtained by
simply multiplying by 100. In addition in some cases, as for example for inflation, the variable is defined
on a quarterly basis, so it needs to be multiplied by 4 to yield annualised variations.

A.2.9 The function graphing.m

In addition, we provide a basic graphics function to produce plots for IRFs as in Section 4. The function
has the following required inputs:

• the matrix IR containing the impulse response functions, as generated by impulseresponse.m;

• a variables structure, that contains the position of each variable;

• a scalar for the horizon of the plots;

This default inputs will produce the average impulse response function for all variables in the model,
averaging IRFs across contingencies.

Optional inputs Options for this function allow to plot only a subset of variables and to superimpose
impulse response functions for a specific set of contingencies:

Option Input Description

variables cell array plot a subset of variables listed in cell array
cont data matrix ResM to be used in conjunction with cont num. Provides IRFs for each contingency
cont num vector selects contingencies to plot

The line of code below shows an example.

graphing(IR,var,30,’variables’,{’pi’,’y’,’i’},’cont_data’,ResM,’cont_num’,1:30)

This line produces the impulse response function for variables π, y and i, as well as the IRFs specific to
contingencies 1 to 30.

38See Section 3 for more details.
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A.3 Data

Output shows deviation of real GDP from the linear trend of real GDP estimated on 2000Q1-2007Q2
sample. Inflation shows chain-type price index of personal consumption expenditures excluding food
and energy, percentage change to previous quarter, annualised. The interest rate is the Federal Funds
Rate. With the exception of nominal GDP in Figure 8, data series for the price level, NGDP, cumulated
NGDP deviations and Dual Mandate index are constructed from output and inflation series.39

A.4 Additional welfare metrics

In the Tables providing performance metrics for the policy rules we calculate a volatility index for selected
variables zt as the following.

E0

∞

∑
t=0

βt(zt − z̄)2 (A.6)

A.5 FRBNY DSGE model

The FRBNY DSGE model was developed for policy analysis at the Federal Reserve Bank of New York
and builds on several milestone papers in the DSGE literature.40 The model features nominal wage and
price rigidities, variable capital utilisation, costs of adjusting investment, habit formation in consumption
and credit frictions. In total, the equilibrium conditions of the model include 17 equations.41

The equilibrium conditions are taken one for one from Del Negro, Giannoni and Patterson (2013). To
implement the model in our toolkit, we make different assumptions on the shock structure. Del Negro,
Giannoni and Patterson (2013) include eight structural shocks, each following an AR(1) process, and two
i.i.d. monetary policy shocks. We assume that the shocks are perfectly correlated and follow a two-state
Markov Process with absorbing state. The applications in this paper feature two structural shocks: a
preference shock, b̂t and a cost push shock, λ̃ f ,t. The preference shock scales the overall per period utility
and acts as a negative shock to the natural rate of interest in our experiment. The cost push shock enters
the Phillips curve and is used to target a specific drop in inflation.

The policy rule proposed in Del Negro, Giannoni and Patterson (2013) is the following:42

Rt = max

{
1; ρRRt−1 + (1− ρR)

(
ϕπ

3

∑
j=0

π̂t−j + ϕy

3

∑
j=0

(ŷt−j − ŷt−j−1) + ln R̄

)}
(A.7)

were Rt is the (gross) nominal interest rate, πt inflation rate, yt output gap and the remaining are
parameters. All hatted variables are in log-deviation from steady state, while steady state variables are
denoted by a bar. The policy rule in this model has a standard form: The central bank sets the interest
rate according to a function of (lagged) terms of inflation and output as well as the nominal interest rate
of the previous period. If this number turns out to be negative, the nominal interest rate is equal to zero,

39Series identifiers are GDPC1 (output), GDP (nominal output), PCEPILFE (price level), BPCCRO1Q156NBEA (inflation) and
FEDFUNDS (Federal Funds rate). Data retrieved from FRED (2020), on January 29, 2020.

40The FRBNY DSGE Model is explained in detail in Del Negro et al. (2013). We implement a slightly different version of the
model which is presented in Del Negro, Giannoni and Patterson (2013). We decide in favor of this version because it features a
preference shock.

41The model includes several lagged terms. Setting up the full model with our toolkit, we count 15 state variables.
42We will commonly refer to this rule as the ”FRBNY rule”.
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the lower bound. In regimes 1 and 2, the lower bound part of the policy rule will be in effect. In regimes
0 and 3, the endogenous part of the policy rule is part of the equilibrium conditions and has to hold at a
candidate solution.

The model includes several predetermined variables introducing inertial dynamics into the model. A
consequence of this is that we can no longer impose the monotonicity of k: As the shock is on for longer,
the state variables, like capital, approach their new ’steady state’. As they do this, it can turn out to be
optimal to keep the interest rate at the lower bound for a shorter period as contingencies get higher, i.e. a
hump shaped k.43

A.5.1 NYFRB Model description

We refer the reader to the Appendix in Del Negro, Giannoni and Patterson (2013).

A.5.2 Calibration

To parametrise our model, we choose the posterior means as reported in Del Negro, Giannoni and
Patterson (2013) as parameter values.

There are only five exceptions: the transition probability of the two-state Markov shock, µ, the values
of the two shocks in the low state, b̂L and λ̃ f ,L, the discount factor β and the steady state inflation rate
π̄. The first three values are chosen to minimise the quadratic distance to three targets: maximum drop
of output of 8.5%, a maximum drop of inflation when at the ELB to a value of 1.5% and an expected
duration at the ELB at the point in time of hitting the ELB of 4 quarters. The first two are motivated by
observed values during the Great Recession. Expected duration at the ELB of 4 quarters we take from
Blue Chip survey of forecaster, see Aspen Publishers 2008-12.

We use the model with the FRBNY policy rule, Equation (A.7), to do the calibration. Importantly, the
targets have to be matched for a realisation of the shock that implies 28 quarters at the ELB, as observed
in the data. In our calibration this corresponds to the two-state Markov shock switching to the high state
in period 32, i.e. contingency 32.44 The discount factor β is chosen to match a steady state natural rate
of real interest of 0%. A real rate of 0% corresponds to the lower bound of December 2019 FOMC long
run projections.45 Finally, the steady state inflation rate is set to 2%. Table A.1 shows the values of the
variables we target in the data and the model, respectively, and the implied values for the parameters.
Furthermore, the shock variables µ̂, ẑ, χ̂, ψ̂, ĝ, εR, εR

k , σ̃ω are all set to zero.

Since the model has non-zero steady state inflation, we adjust the welfare loss function used to compare
the performance of the policy rules to:

E0

∞

∑
t=0

βt[(πt − π̄)2 + λŶ2
t ] (A.8)

43It should also be mentioned that we do not prove analytically that there is a unique k and henceforth a unique equilibrium in
the model. We have not encountered any case of multiple equilibria when experimenting with the model.

44The solution features 4 periods in regime 0, i.e. T̃ = 5 and k32 = 1.
45See Board of Governors of the Federal Reserve System (2019).
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The Fixed Length Forward Guidance Rule (FLFG) in the FRBNY model is the following:

Rt =

1 for t ≤ ν

Rule (A.7) (FRBNY Rule) otherwise
(A.9)

Note that Rt is the gross nominal interest rate, so the rule imposes the ZLB in the case of t ≤ ν. We choose
ν = 6 as it minimises welfare loss according to the loss function A.8 with equal weights. We impose
T̃ = 1 in this rule, meaning that the interest rate goes to zero immediately in this rule.

Target Data Model Parameter Value

min πt|ELB 1.5 1.486 λ̃ f ,L 0.0015
min Ŷt −8.5 −8.49 b̂L -0.105

E(ELB)|ELB 4 3.95 µ 0.736

r̄ 0.0 0.0 β 1.0042
π̄ 2.0 2.0

Table A.1: Calibration results. See text for details. E(ELB)|ELB is in quarters. Note: First three parameters are
calibrated simultaneously to hit targets. Changing one of the three parameters will affect all three targets. Last two
parameters have one-to-one relation with respective target. π̄ is set directly.
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Acronym Source Standard Values Optimal Values

TTR Nakov (2008) φπ = 1.5
φy = 0.5 N/A

TTR-1 Nakov (2008) φπ = 1.5 φπ = 1.14
φy = 0.5 φy = 0.28

TTR+1 Nakov (2008) φπ = 1.5
φy = 0.5 N/A

TTRS Nakov (2008) φπ = 1.5 φπ = 51.50
φy = 0.5 φy = 48.77
φi = 0.8 φi = 0.98

TTRP Wolman (2005) φp = 1.5 φp = 1.23
φy = 0.5 φy = 1.23

ATR Reifschneider and Williams (2000) α = 1 α = 92.09
φπ = 1.5 φπ = 100
φy = 0.5 φy = 34.23

SUP Rotemberg and Woodford (1999) φSUP = 1.28 φSUP = 1.48

AIT Reifschneider and Wilcox (2019) φAIT = 5 φAIT = 18.7

Table A.2: Policy rules, standard parametrisation, and optimal parametrisation. The Table reports, for each Taylor-
type policy rule, the parameter values used for the simulations. The second column reports values used in the
literature as well as the source. The last column reports optimal values, that minimise the welfare loss (25).In TTR and
TTR+1 the standard values are already optimal.
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A.6 Results if ELB constraint not imposed

In this section we present results for both the Simple New Keynesian model of Section 4.5 and the FRBNY
DSGE model of Section 5 for the case of not imposing the ELB constraint. This means the nominal interest
rate can go arbitrarily negative. Apart from dropping the ELB assumption, the parametrisation will be
identical to the baseline experiments in the main text. Due to the linearity of the model (if the ELB is not
imposed), the results also tell us how the rules perform in response to small enough shocks that do not
make the ELB bind.46

A.6.1 Simple New Keynesian model without imposing the ELB

Table A.3 shows results if we replicate the rule comparison of Section 4.5 but do not impose the ELB. The
parametrisation is exactly the same as the one used to derive the results shown in Table 2, except that the
ELB constraint is not imposed.

First let us note that under optimal commitment, deeply negative interest rates are implemented. The
nominal rate drops to almost -5%. Comparing optimal commitment with and without imposing the ELB,
we get that in the latter case the welfare loss is about 40% lower.

When it comes to the relative ranking of the rules, we see that our proposed rules HD-NGDPT and SDTR
perform very well. The only rule outperforming both is a price level targeting rule (PLT), which coincides
with optimal commitment in the case of no ELB imposed.47 NGDPT and HD-NGDPT overlap, which is
due to the ability of the central bank to keep nominal GDP on target at all times if it is not constrained by
the ELB. Finally, rules ATR and SUP lose some appeal once we do not impose the ELB.

46Figures for this section are available from the authors upon request.
47This result is shown in Eggertsson and Woodford (2003).
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Welfare Loss Volatility x Volatility π Volatility i Impact x Impact π
(1) (2) (3) (4) (5) (6)

OCP 5.196 10−4 3.497 10−3 3.011 10−4 4.697 10−3 −0.233 2.914

PANEL A: baseline rules

OCP 1.000 1.000 1.000 1.000 1.000 1.000
TTR 2.156 3.923 0.873 0.250 16.673 0.739
HD-NGDPT 1.258 2.404 0.427 1.283 2.401 0.730
SDTR 1.821 2.165 1.571 0.264 12.406 0.991
ATR 2.156 3.923 0.873 0.250 16.673 0.739
SUP 2.147 2.904 1.597 0.128 17.239 0.941

PANEL B: additional rules

PLT 1.000 1.000 1.000 1.000 1.000 1.000
NGDPT 1.258 2.404 0.427 1.283 2.401 0.730
TTRP 6.643 15.777 0.012 0.060 36.881 −0.143
TTRS-1 2.414 4.091 1.196 0.109 20.730 0.797
TTR-1 2.155 3.807 0.955 0.220 18.079 0.764
AIT 2.532 5.779 0.175 0.451 17.672 0.426

Table A.3: Some metrics for selected interest rate rules in the simple two-equation NK model in the presence of a
correlated cost push shock without imposing the ELB. All rows except the first show values normalised with respect
to the optimal commitment policy (OCP, first row). Column (1) reports the welfare loss computed from a quadratic
loss function for the central bank with equal weights; Columns (2)-(4) report a summary measure of deviations of
the endogenous variables from target, computed according to Equation (A.6); Finally, Columns (5) and (6) show the
response on impact, in annual percentage points, of the output gap and inflation to a natural interest rate shock and
a correlated cost push shock of the same size as in Table 2. Rule calibration reported in Table (A.2). The model is
calibrated with the standard EW (2003) parameter values reported in footnote 21. FLFG coincides with TTR if the ELB
constraint is not imposed.

A.6.2 FRBNY DSGE model without imposing the ELB

Table A.4 shows results if we replicate the rule comparison of Section 5 but do not impose the ELB. The
parametrisation is exactly the same as the one used to derive the results shown in Table 3, except that the
ELB constraint is not imposed.

As in the simple two-equation NK model, we can get deep negative rates in this case. While the nominal
rate does not drop far below zero under the FRBNY Rule, rule PLT lowers the nominal rate to almost
-15% for a period of more than 7 years. The welfare loss is not much lower under the FRBNY Rule if the
ELB is not imposed, but drops by more than 96% if one compares the best performing rule when the ELB
is not imposed (rule PLT) to the FRBNY Rule with the ELB constraint active.

When it comes to the relative ranking of the rules, we see that our proposed rules HD-NGDPT and SDTR
perform very well. The only rule outperforming both is again a price level targeting rule (PLT), which
does not come as a surprise given the result in the simple NK model of the previous section.48 NGDPT
and HD-NGDPT again overlap, for the same reasons stated in Section A.6.1.

48Note however that we are not aware of a derivation that shows that PLT is equivalent to optimal commitment in the FRBNY
DSGE model.
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Welfare Loss Volatility Ŷ Volatility π Volatility i Impact Ŷ Impact π
(1) (2) (3) (4) (5) (6)

FRBNY Rule 8.216 10−4 0.013 1.3433 10−5 7.2973 10−5 −2.523 2.809

PANEL A: baseline rules

FRBNY Rule 1.000 1.000 1.000 1.000 1.000 1.000
HD-NGDPT 0.058 0.025 2.052 68.381 0.116 1.130
SDTR 0.082 0.042 2.498 322.130 0.495 1.157
ATR 0.392 0.372 1.570 5.250 0.717 1.059
SUP 0.288 0.254 2.336 5.129 0.598 1.157

PANEL B: additional rules

PLT 0.040 0.003 2.256 77.405 0.030 1.136
NGDPT 0.058 0.025 2.052 68.381 0.116 1.130
TTRP 0.871 0.869 1.003 1.100 0.955 1.035
TTRS-1 0.406 0.386 1.564 2.598 0.798 1.076
TTR 0.392 0.372 1.570 5.250 0.717 1.059
TTR-1 0.368 0.348 1.600 4.590 0.735 1.066
AIT 0.440 0.424 1.354 4.156 0.753 1.064
TTR+1 0.436 0.418 1.527 6.192 0.710 1.051

Table A.4: Some metrics for interest rate rules in the FRBNY model in the presence of a preference shock and
correlated cost push shock without imposing the ELB. All rows except the first show values normalised with respect
to the modified Taylor rule in Del Negro, Giannoni and Patterson (2013) (FRBNY Rule, first row). Column (1) reports
the welfare loss computed from a quadratic loss function for the central bank with equal weights and an inflation
target, see Equation (A.8); Columns (2)-(4) report a summary measure of deviations of the endogenous variables
from target, computed according to Equation (A.6); Finally, Columns (5) and (6) show the response on impact, in
annual percentage points, of the output gap and inflation to a preference shock and a correlated cost push shock of the
same size as in Table 3. See Section A.5.2 for details on calibration. The list of acronyms is detailed in Table 1. FLFG
coincides with FRBNY Rule if the ELB constraint is not imposed.
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A.7 Robustness checks

A.7.1 Simple New Keynesian model with -0.5% inflation drop – Additional policy rules and im-
pulse responses
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(a) Paths for output (Ŷ), inflation (π) and nominal interest rate (i)

0 2 4 6 8 10 12 14 16 18 20

0

2

4

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

0 2 4 6 8 10 12 14 16 18 20
-100

-50

0

50

0 2 4 6 8 10 12 14 16 18 20

Quarters

-50

0

PLT NGDPT TTRP TTRS-1 TTR-1 AIT FLFG

(b) Paths for price level (P̂), nominal output (N̂), cumulated nominal output (Γ̂) and the
Dual Mandate index (D̂)

Figure A.1: Dynamic response of a natural interest rate shock and a correlated cost push shock in a simple two-
equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation by
0.5% under a Truncated Taylor Rule (TTR). The natural interest rate reverts to the absorbing state after 10 quarters
(10th contingency). The list of acronyms is detailed in Table 1. The parametrisation is reported in Table A.2.
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Figure A.2: Average impulse response of a natural interest rate shock and a correlated cost push shock in a simple
two-equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
by 0.5% under a Truncated Taylor Rule (TTR). The list of acronyms is detailed in Table 1. The parametrisation is
reported in Table A.2.
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Figure A.3: Average impulse response of a natural interest rate shock and a correlated cost push shock in a simple
two-equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
by 0.5% under a Truncated Taylor Rule (TTR). The list of acronyms is detailed in Table 1. The parametrisation is
reported in Table A.2.
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A.7.2 Simple New Keynesian model with 0% inflation drop

Welfare Loss E0[τ + kτ − T̃] Volatility x Volatility π Volatility i Impact x Impact π
(1) (2) (3) (4) (5) (6) (7)

OCP 9.938 10−4 15.471 6.409 10−3 5.932 10−4 1.438 10−3 −2.415 3.366

PANEL A: baseline rules

OCP 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TTR 3.150 0.646 7.814 0.000 0.645 3.077 0.016
HD-NGDPT 1.577 1.108 3.613 0.203 1.098 1.832 0.499
SDTR 1.191 0.693 1.512 0.974 0.700 1.393 0.937
ATR 1.361 0.646 2.437 0.634 0.653 1.775 0.744
SUP 1.335 0.000 1.860 0.980 0.411 1.778 0.902

PANEL B: additional rules

PLT 3.213 0.646 7.971 0.000 0.645 3.105 0.000
NGDPT 3.213 0.646 7.971 0.000 0.645 3.105 0.000
TTRP 4.082 0.000 10.119 0.006 0.186 3.824 −0.121
TTRS-1 1.469 0.000 2.496 0.775 0.352 2.094 0.787
TTR-1 1.622 0.640 3.500 0.354 0.641 2.243 0.560
AIT 3.213 0.646 7.971 0.000 0.645 3.105 0.000
FRBNY Rule 67.154 0.782 124.781 28.239 1.700 12.431 −5.177
FLFG 2.908 0.795 7.196 0.012 0.799 2.518 0.185

Table A.5: Some metrics for selected interest rate rules in the simple two-equation NK model in the presence of a
correlated cost push shock. All rows except the first show values normalised with respect to the optimal commitment
policy (OCP, first row). Column (1) reports the welfare loss computed from a quadratic loss function for the central
bank with equal weights; Column (2) displays the unconditional expected duration of the Zero Lower Bound (regimes
1 and 2); Columns (3)-(5) report a summary measure of deviations of the endogenous variables from target, computed
according to Equation A.6; Finally, Columns (6) and (7) show the response on impact, in annual percentage points, of
the output gap and inflation to a natural interest rate shock and a correlated cost push shock such that output falls by
7.5% and inflation remains constant under a Truncated Taylor Rule (TTR). Rule calibration reported in Table (A.2). The
model is calibrated with the standard EW (2003) parameter values reported in footnote 21.
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Figure A.4: Dynamic response of a natural interest rate shock and a correlated cost push shock in a simple two-
equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
remains constant under a Truncated Taylor Rule (TTR). The natural interest rate reverts to the absorbing state after 10
quarters (10th contingency). The list of acronyms is detailed in Table 1. The parametrisation is reported in Table A.2.
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(b) Paths for price level (P̂), nominal output (N̂), cumulated nominal output (Γ̂) and the Dual
Mandate index (D̂)

Figure A.5: Dynamic response of a natural interest rate shock and a correlated cost push shock in a simple two-
equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
remains constant under a Truncated Taylor Rule (TTR). The natural interest rate reverts to the absorbing state after 10
quarters (10th contingency). The list of acronyms is detailed in Table 1. The parametrisation is reported in Table A.2.
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Figure A.6: Average impulse response of a natural interest rate shock and a correlated cost push shock in a simple
two-equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
remains constant under a Truncated Taylor Rule (TTR). The list of acronyms is detailed in Table 1. The parametrisation
is reported in Table A.2.

60



0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20

Quarters

0

1

2

3

4

PLT NGDPT TTRP TTRS-1 TTR-1 AIT FLFG
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Figure A.7: Average impulse response of a natural interest rate shock and a correlated cost push shock in a simple
two-equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
remains constant under a Truncated Taylor Rule (TTR). The list of acronyms is detailed in Table 1. The parametrisation
is reported in Table A.2.
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A.7.3 Simple New Keynesian model with -2% inflation drop

Welfare Loss E0[τ + kτ − T̃] Volatility x Volatility π Volatility i Impact x Impact π
(1) (2) (3) (4) (5) (6) (7)

OCP 4.162 10−4 14.073 2.784 10−3 2.422 10−4 1.326 10−3 −1.597 2.141

PANEL A: baseline rules

OCP 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TTR 7.975 0.711 17.869 0.865 0.699 4.638 −0.900
HD-NGDPT 1.537 1.096 3.372 0.217 1.083 1.762 0.512
SDTR 1.202 0.768 1.514 0.978 0.774 1.422 0.931
ATR 1.647 0.711 3.405 0.383 0.714 2.133 0.556
SUP 1.428 0.000 2.056 0.977 0.477 1.997 0.873

PANEL B: additional rules

PLT 3.660 0.711 8.745 0.006 0.699 3.303 −0.101
NGDPT 3.504 0.711 8.377 0.002 0.699 3.229 −0.064
TTRP 4.645 0.000 11.085 0.017 0.242 4.179 −0.208
TTRS-1 1.796 0.000 3.523 0.555 0.403 2.603 0.623
TTR-1 3.336 0.703 7.976 0.001 0.695 3.377 −0.045
AIT 3.737 0.711 8.923 0.011 0.700 3.327 −0.121
FRBNY Rule 15.284 0.729 30.660 4.234 1.157 5.849 −1.549
FLFG 7.323 0.874 16.451 0.764 0.866 3.793 −0.635

Table A.6: Some metrics for selected interest rate rules in the simple two-equation NK model in the presence of a
correlated cost push shock. All rows except the first show values normalised with respect to the optimal commitment
policy (OCP, first row). Column (1) reports the welfare loss computed from a quadratic loss function for the central
bank with equal weights; Column (2) displays the unconditional expected duration of the Zero Lower Bound (regimes
1 and 2); Columns (3)-(5) report a summary measure of deviations of the endogenous variables from target, computed
according to Equation A.6; Finally, Columns (6) and (7) show the response on impact, in annual percentage points, of
the output gap and inflation to a natural interest rate shock and a correlated cost push shock such that output falls by
7.5% and inflation by 2% under a Truncated Taylor Rule (TTR). Rule calibration reported in Table (A.2). The model is
calibrated with the standard EW (2003) parameter values reported in footnote 21.
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Figure A.8: Dynamic response of a natural interest rate shock and a correlated cost push shock in a simple two-
equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
by 2% constant under a Truncated Taylor Rule (TTR). The natural interest rate reverts to the absorbing state after 10
quarters (10th contingency). The list of acronyms is detailed in Table 1. The parametrisation is reported in Table A.2.
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Figure A.9: Dynamic response of a natural interest rate shock and a correlated cost push shock in a simple two-
equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation by
2% under a Truncated Taylor Rule (TTR). The natural interest rate reverts to the absorbing state after 10 quarters (10th
contingency). The list of acronyms is detailed in Table 1. The parametrisation is reported in Table A.2.
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Figure A.10: Average impulse response of a natural interest rate shock and a correlated cost push shock in a simple
two-equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
by 2% under a Truncated Taylor Rule (TTR). The list of acronyms is detailed in Table 1. The parametrisation is reported
in Table A.2.
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Figure A.11: Average impulse response of a natural interest rate shock and a correlated cost push shock in a simple
two-equation NK model, under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
by 2% under a Truncated Taylor Rule (TTR). The list of acronyms is detailed in Table 1. The parametrisation is reported
in Table A.2.
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A.7.4 Simple New Keynesian model with -0.5% inflation drop – Price rigidity

Welfare Loss E0[τ + kτ − T̃] Volatility x Volatility π Volatility i Impact x Impact π
(1) (2) (3) (4) (5) (6) (7)

OCP 4.896 10−4 16.549 7.661 10−3 1.081 10−5 1.524 10−3 −2.755 0.072

PANEL A: baseline rules

OCP 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TTR 6.550 0.604 6.668 1.312 0.608 2.722 −6.929
HD-NGDPT 1.137 1.048 1.162 0.034 1.036 1.116 −0.600
SDTR 1.085 1.020 1.108 0.079 1.018 1.102 −0.304
ATR 1.876 0.794 1.916 0.105 0.824 1.719 −2.769
SUP 4.520 0.604 4.604 0.797 0.664 2.255 −5.398

PANEL B: additional rules

PLT 6.328 0.604 6.445 1.133 0.608 2.692 −6.608
NGDPT 4.492 0.604 4.584 0.439 0.608 2.394 −4.589
TTRP 4.133 0.000 4.222 0.183 0.227 2.716 −3.517
TTRS-1 1.522 0.000 1.552 0.173 1.010 1.820 −2.890
TTR-1 5.874 0.598 5.981 1.149 0.605 2.740 −6.528
AIT 5.431 0.604 5.533 0.911 0.611 2.547 −5.984
FRBNY Rule 23.603 0.620 23.399 32.647 1.449 4.404 −8.159
FLFG 6.084 0.744 6.193 1.253 0.753 2.294 −6.257

Table A.7: Some metrics for selected interest rate rules in the simple two-equation NK model with increased price
rigidity (lower κ). All rows except the first show values normalised with respect to the optimal commitment policy
(OCP, first row). Column (1) reports the welfare loss computed from a quadratic loss function for the central bank
with equal weights; Column (2) displays the unconditional expected duration of the Zero Lower Bound (regimes 1
and 2); Columns (3)-(5) report a summary measure of deviations of the endogenous variables from target, computed
according to Equation A.6; Finally, Columns (6) and (7) show the response on impact, in annual percentage points,
of the output gap and inflation to a natural interest rate shock such that output falls by 7.5% and inflation by 0.5%
under a Truncated Taylor Rule (TTR). Rule calibration reported in Table (A.2). Remaining parameters are calibrated
according to standard EW (2003) values reported in footnote 21.
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Figure A.12: Dynamic response of a natural interest rate shock in a simple two-equation NK model with increased
price rigidity (lower κ), under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
by 0.5% under a Truncated Taylor Rule (TTR). The natural interest rate reverts to the absorbing state after 10 quarters
(10th contingency). The list of acronyms is detailed in Table 1. Remaining parameters are calibrated according to
standard EW (2003) values reported in footnote 21.
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Figure A.13: Dynamic response of a natural interest rate shock in a simple two-equation NK model with increased
price rigidity (lower κ), under different policy rules. Shocks are calibrated such that output falls by 7.5% and inflation
by 0.5% under a Truncated Taylor Rule (TTR). The natural interest rate reverts to the absorbing state after 10 quarters
(10th contingency). The list of acronyms is detailed in Table 1.Remaining parameters are calibrated according to
standard EW (2003) values reported in footnote 21.
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Figure A.14: Average impulse response of a natural interest rate shock in a simple two-equation NK model with
increased price rigidity (lower κ), under different policy rules. Shocks are calibrated such that output falls by 7.5% and
inflation by 0.5% under a Truncated Taylor Rule (TTR). The list of acronyms is detailed in Table 1. The parametrisation
is reported in Table A.2. 70
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Figure A.15: Average impulse response of a natural interest rate shock in a simple two-equation NK model with
increased price rigidity (lower κ), under different policy rules. Shocks are calibrated such that output falls by 7.5% and
inflation by 0.5% under a Truncated Taylor Rule (TTR). The list of acronyms is detailed in Table 1. The parametrisation
is reported in Table A.2. 71



A.7.5 Simple New Keynesian model with -0.5% inflation drop – optimised policy rules

Welfare Loss E0[τ + kτ − T̃] Volatility x Volatility π Volatility i Impact x Impact π
(1) (2) (3) (4) (5) (6) (7)

OCP 8.252 10−4 15.257 5.356 10−3 4.904 10−4 1.411 10−3 −2.208 3.059

PANEL A: baseline rules

OCP 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TTR 3.800 0.655 9.335 0.022 0.657 3.364 −0.144
HD-NGDPT 1.568 1.099 3.563 0.207 1.094 1.818 0.502
SDTR 1.194 0.703 1.514 0.975 0.716 1.400 0.936
ATR 1.169 0.709 1.070 1.237 0.721 1.191 1.053
SUP 1.181 0.590 1.101 1.235 0.689 1.147 1.068

PANEL B: additional rules

PLT 3.294 0.655 8.118 0.000 0.657 3.145 −0.018
NGDPT 3.267 0.655 8.054 0.000 0.657 3.132 −0.011
TTRP 3.269 0.655 8.058 0.000 0.657 3.133 −0.012
TTRS-1 1.353 0.000 0.295 2.076 0.647 0.882 1.358
TTR-1 1.732 0.649 3.845 0.289 0.651 2.360 0.504
AIT 3.278 0.655 8.079 0.000 0.657 3.138 −0.014
FLFG 3.105 1.019 7.391 0.180 1.023 1.558 0.597

Table A.8: Some metrics for selected interest rate rules in the simple two-equation NK model with optimised policy
rules. All rows except the first show values normalised with respect to the optimal commitment policy (OCP, first row).
Column (1) reports the welfare loss computed from a quadratic loss function for the central bank with equal weights;
Column (2) displays the unconditional expected duration of the Zero Lower Bound (regimes 1 and 2); Columns (3)-(5)
report a summary measure of deviations of the endogenous variables from target, computed according to Equation
A.6; Finally, Columns (6) and (7) show the response on impact, in annual percentage points, of the output gap and
inflation to a natural interest rate shock such that output falls by 7.5% and inflation by 0.5% under a Truncated Taylor
Rule (TTR). Rule calibration reported in Table (A.2). The model is calibrated with the standard EW (2003) parameter
values reported in footnote 21.
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A.7.6 FRBNY DSGE Model
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Figure A.16: Dynamic response to a preference shock and a correlated cost push shock in FRBNY model, under
baseline policy rules. Coloured lines show paths for price level (P̂), nominal output (N̂), cumulated nominal output
(Γ̂) and the Dual Mandate index (D̂). The two-state Markov shocks switch to low state in Q4-07 and revert to the
absorbing state after 32 quarters (32nd contingency). The vertical axes report deviations from detrended steady state,
in percentage points (annualised figures). The horizontal axis shows quarter and calendar year. See Section A.5.2 for
calibration. The list of acronyms is detailed in Table 1. FRBNY rule refers to Equation (A.7).

73



Q3-07 Q1-10 Q3-12 Q1-15 Q3-17 Q1-20
-10

-8

-6

-4

-2

0

Q3-07 Q1-10 Q3-12 Q1-15 Q3-17 Q1-20

1

1.5

2

2.5

3

Q3-07 Q1-10 Q3-12 Q1-15 Q3-17 Q1-20

0

1

2

3

4

5

TTRP TTRS-1 TTR TTR-1 AIT TTR+1 NGDPT PLT FLFG data

Figure A.17: Dynamic response to a preference shock and a correlated cost push shock in FRBNY model, under
additional policy rules. Coloured lines show paths for output (Ŷt), inflation (π), the nominal interest rate (i), and
nominal GDP (N̂). Dotted red line is data. The two-state Markov shocks switches to low state in Q4-07 and reverts
to the absorbing state after 32 quarters (32nd contingency). The vertical axes for Ŷt and N̂ report deviations from
detrended steady state, in percentage points (annualised figures). The vertical axes for π and i report annualised
percentage points. The horizontal axis shows quarter and calendar year. See Section A.3 for details on data and Section
A.5.2 for calibration. The list of acronyms is detailed in Table 1.
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Figure A.18: Dynamic response to a preference shock and a correlated cost push shock in FRBNY model, under
additional policy rules. Coloured lines show paths for price level (P̂), nominal output (N̂), cumulated nominal output
(Γ̂) and the Dual Mandate index (D̂). The two-state Markov shocks switch to low state in Q4-07 and revert to the
absorbing state after 32 quarters (32nd contingency). The vertical axes report deviations from detrended steady state,
in percentage points (annualised figures). The horizontal axis shows quarter and calendar year. See Section A.5.2 for
calibration. The list of acronyms is detailed in Table 1.
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Figure A.19: Average impulse response to a preference shock and a correlated cost push shock in FRBNY model,
under baseline policy rules. The vertical axes report deviations from detrended steady state, in percentage points
(annualised figures). The vertical axes for π and i report annualised percentage points. The horizontal axis shows
quarter and calendar year. See Section A.5.2 for calibration. The list of acronyms is detailed in Table 1. FRBNY rule
refers to Equation (A.7).
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(b) Paths for price level (P̂), nominal output (N̂), cumulated nominal output (Γ̂) and the Dual Mandate
index (D̂)

Figure A.20: Average impulse response to a preference shock and a correlated cost push shock in FRBNY model,
under additional policy rules. The vertical axes report deviations from detrended steady state, in percentage points
(annualised figures). The vertical axes for π and i report annualised percentage points. The horizontal axis shows
quarter and calendar year. See Section A.5.2 for calibration. The list of acronyms is detailed in Table 1.
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B Examples

This section presents a series of examples that are designed to show the features of the toolkit, and to
guide the user in the setup required to solve a specific model. The examples are built around the simple
two-equation model described by Equations 14-15 and a backward-looking Taylor rule with interest rate
smoothing (TTRS).

All example files set the function regime1.m in verbose mode, in order to provide the user with more
information on the inner workings of our toolkit.

Example 1 shows how to use the code in its most basic form. We suggest the user to start with that first,
as its configuration is often referenced to by subsequent examples.

B.1 Example 1

This example shows how to solve a simple model with state variables.

B.1.1 Model

The equations describing the model are:

Etxt+1 + σEtπt+1 = xt + σ (it − rn
t ) (A.10)

βEtπt+1 = πt − κxt (A.11)

0 = −it + max{0, φiit−1 + (1− φi)(r∗ + φππt−1 + φxxt−1)} (A.12)

where rn
t evolves as a two-state Markov process with constant transition probability µ. Equations A.10-

A.12 are stated with all expectational variables on the left-hand side, and current pre-determined variables
and constants on the right-hand side, so that they conform to the linear system in Equation 5. Note how
A.12 is the equation subject to the bound, so it will be listed as last in the script declaring all the equations
(which we conventionally call equations.m).

B.1.2 Variables

Our toolkit requires the model to be cast in the form specified by Equation 5. We want to plot, together
with the other endogenous variables, impulse responses for the interest rate implied by TTRS in A.12;
hence, we define an ancillary jump variable tracking the implied rate: iimp

t ≡ φiit−1 + (1− φi)(r∗ +
φππt−1 + φxxt−1). As a consequence, the vector of variables ξt will be:

ξt ≡
[

xt πt iimp
t it xt−1 πt−1 it−1 r∗ rn

t

]′
The ordering of variables is as important for the correct operation of our toolkit as it was for equations.
As noted in A.2.1, the user should first include jump variables (in this example xt, πt and iimp

t ), then
the variable subject to the occasionally binding constraint (it) followed by predetermined variables
(xt−1, πt−1, it−1), constants (r∗) and finally shocks (rn

t ). This is achieved by generating a structure called
vars, which lists as fields the position of each variable in ξt (in our codes and examples, we build this
structure in the script variables.m)
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B.1.3 Equations

A very similar structure (generated in our codes in equations.m) declares the ordering for the equations.
This object does not contain any actual mathematical specification, but rather it simply links labels for
each equation (for example nkpc or policy) to the intended ordering. Once again, the equation subject
to the occasionally binding constraint A.12 is ordered last. Here it is called rule and listed as number 9.
In addition, the identities specifying the shocks (only rn

t in this example) are to be included second to last.
The other seven equations are, in ascending order: equations A.10 and A.11, three equations defining the
lagged terms xt−1, πt−1 and it−1,49 one equation defining iimp

t and finally one equation for the constant
term r∗. In our implementation of the model, this last term is introduced as a permanent shock, so the
equation specifying it is in the form Etr∗t+1 = r∗t . This will be the first component of what the toolkit
treats as Markov disturbances. Section B.1.5 provides further details on how to parametrise it so that it
takes a constant value across all regimes.

The coefficients of the linearised system in A and B in 5 are specified in matrices.m. Since the matrices
are quite sparse, the code initialises them at zero and fills in the non-zero elements in the subsequent
lines. Our codes makes use of the structures defined in equations.m and variables.m to locate the
position of each variable in every equation. The user is free to specify numerical values for the coefficients
directly, or to obtain them from a separate structure dedicated to the model calibration (we take the latter
route, see parameters.m). The resulting matrices are as follows:

A ≡



1 σ 0 0 0 0 0 0 σ

0 β 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


, B ≡



1 0 0 σ 0 0 0 0 0
−κ 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 −1 0 (1− φi)φx (1− φi)φπ φi 1− φi 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 −1 (1− φi)φx (1− φi)φπ φi 1− φi 0


(A.13)

Once again, the last row in A and B is the policy rule subject to the occasionally binding constraint.
The fourth column contains coefficients for the jump variable subject to the constraint (it). The last two
columns report coefficients for the shocks: the second to last is a permanent shock used to include a
constant term r∗, while the last column is the proper forcing term rn

t , which follows a two-state Markov
process.

B.1.4 Initial conditions

The toolkit allows for optional initial conditions only for the pre-determined variables. To simplify the
syntax and help the user keep track of what initial values are introduced, these conditions are declared as
a column vector of the same length as ξt, stored in the field param.init cond. If the field is omitted,
the toolkit simply initialises it at zero. In this example, we introduce an initial condition i−1 = 1

β − 1.50

This is implemented in the last line of the script parameters.m. As the constant term r∗ is introduced

49These simple equations are in the form Etyt+1 = xt, where yt = xt−1. They link the current variable xt with its lagged value yt.
50Note: this condition applies to the predetermined variable it−1 at t = 0, not on the jump variable it.
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in the form of a permanent shock, no further initial conditions are necessary. In the first line of the same
script we also declare the number of state variables, which we pass to the toolkit via the field param.NS.
In the present example we have three predetermined variables and two shocks, so NS = 5.

B.1.5 Specifying shocks

Finally, we need to parametrise the values for the two-state Markov shock in the high (steady state) and
low state (or crisis state), as well as the value for the constant term r∗. The toolkit handles these values as
separate vectors for each state. In other words, we need to specify a vector for the values that all shocks
in the model take in the low state, and a separate one for the values of each shock in the high state. These
vectors are fields in the structure param and are called param.sl and param.sh, respectively. In this
example, the first shock is actually a constant term r∗, so it will take the same value r∗ = 1

β − 1 in both
states of the world. The natural rate rn

t drops to −0.5% in the low state and reverts back to r∗ in steady
state. Therefore our two vectors will be as follows:

param.sl =

[
1
β − 1

−0.005

]
, param.sh =

(
1
β
− 1
)[

1
1

]
(A.14)

We create these vectors in the script parameters.m, in the section named Shocks.

This concludes the instructions and customisation specific to this example. For the other parts of ex 1.m

that are required by the toolkit as standard, we refer the reader to the guide at Section A.2.

B.2 Example 2

This example is a minor variation of Example 1, and shows how to solve a model under the assumption
that the ELB becomes binding at an exogenous period t = T̃. This is implemented by passing two
optional parameters to the function regime1.m: a value for T̃ itself (option T tilde input) and a
flag to exclude the search for the length of regime 0 in equilibrium (R0 search). In this configuration,
equilibrium conditions are not satisfied in regime 0. Consequently, the inequality constraint it ≥ 0 is
initially violated and the nominal interest rate turns negative in some periods t < T̃ under our calibration.

B.2.1 Model

As in Section B.1.1.

B.2.2 Variables

As in Section B.1.2.

B.2.3 Equations

As in Section B.1.3.
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B.2.4 Initial conditions

As in Section B.1.4.

B.2.5 Specifying shocks

As in Section B.1.5

B.2.6 Additional parameters

To force the ELB to be binding from a pre-specified period, we need to include two optional parameters
to the inputs of the function regime1.m:

1. RO search set to 0, to disable the search for a T̃ that satisfies equilibrium conditions;

2. T tilde input set to a scalar, in our example t = 5, to provide a numerical value for the exogenous
start of Regime 1.

For the other parts of ex 2.m that are required by the toolkit as standard, we refer the reader to the guide
at Section A.2.

B.3 Example 3

This example shows how to impose an exogenous vector k. As in Example 2, it is implemented as an
optional configuration of regime3.m, where the user provides a value for k and excludes the search for
the equilibrium T̃. For simplicity, in what follows we will work with a constant kτ = 5 for all τ, so that
k = [5 . . . 5]. This policy prescribes it = 0 for five additional periods after the natural rate rn

t has returned
to the absorbing state sh, with no regards to the contingency when the change in regime happens.

B.3.1 Model

As in Section B.1.1.

B.3.2 Variables

As in Section B.1.2.

B.3.3 Equations

As in Section B.1.3.

B.3.4 Initial conditions

As in Section B.1.4.
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B.3.5 Specifying shocks

As in Section B.1.5

B.3.6 Additional parameters

To force regime 2 to last for five periods, the user has to include two optional parameters to the inputs of
the function regime1.m:

1. R0 search set to 0, to disable the search for a T̃ that satisfies equilibrium conditions;

2. k input set to a row vector of length τmax, in our example k = [5 . . . 5], specifying the duration of
regime 2 in every contingency τ.

For the other parts of ex 3.m that are required by the toolkit as standard, we refer the reader to the guide
at Section A.2.

B.4 Example 4

This example shows how to solve a model under a deterministic AR(p) shock. For ease of exposition,
what follows describes the simplest possible case, where p = 1. The implementation is based on setting
the parameter µ = 1, so that the two-state Markov disturbance reverts to steady state at t = 2 with
probability one. Hence, the shock acts as a one-off unanticipated innovation (εt) for the deterministic
autoregressive shock of the model (rn

t ). The shock itself and its law of motion are then specified as a
pre-determined variable. The resulting impulse response is then identical to the second contingency
τ = 2, since all others have zero probability.

B.4.1 Model

The equations describing the model are the same as in Example 1 (A.10-A.12), plus the AR(1) process for
the natural real interest rate:

rn
t+1 = (1− ρ)r∗ + ρrn

t + εt (A.15)

where εt evolves as a two-state Markov process with constant transition probability µ = 1. Note that
equation A.15 will be listed fourth to last in the script declaring all the equations (equations.m), as rn

t

is now treated as a pre-determined variable.

B.4.2 Variables

Since we now have an AR(1) process for rn
t , the vector of variables ξt will be:

ξt ≡
[

xt πt iimp
t it xt−1 πt−1 it−1 rn

t r∗ εt

]′
where εt evolves as a two-state Markov process with degenerate transition probability µ = 1. The variable
for the natural rate rn

t is now ordered third to last, among the other pre-determined states xt−1, πt−1 and
it−1. We refer the reader to B.1.2 for further details on the implementation.
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B.4.3 Equations

The matrices declared in the script matrices.m are as follows:

A ≡



1 σ 0 0 0 0 0 σ 0 0
0 β 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0



, B ≡



1 0 0 σ 0 0 0 0 0 0
−κ 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 −1 0 (1− φi)φx (1− φi)φπ φi 0 1− φi 0
0 0 0 0 0 0 0 ρ r∗ 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 −1 (1− φi)φx (1− φi)φπ φi 0 1− φi 0


(A.16)

The only substantive difference with the matrices in B.1.3 is the presence of the equation for the AR(1)
process for rn

t in the fourth-to-last line of A and B.

B.4.4 Initial conditions

Since rn
t is now a pre-determined variable, it requires an initial condition for the value it assumes in

regime 0. For simplicity, we choose the steady-state value rn
−1 = 1

β − 1. As in B.1.4, this will be declared
at the end of the script parameters.m.

B.4.5 Specifying shocks

We modify the vectors specified in B.1.5 so that the two-state Markov disturbance εt has no effect on the
model after the first period. Trivially, this is done by setting its steady-state value to zero. Our vectors of
shocks will be therefore:

param.sl =

[
1
β − 1

−0.005

]
, param.sl =

[
1
β − 1

0

]
(A.17)

B.4.6 Additional parameters

For the other parts of ex 4.m that are required by the toolkit as standard, we refer the reader to the
guide at Section A.2. Since the model is deterministic, it should be noted that it can be solved by setting
τmax = 2, as the only relevant contingency is τ = 2.
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