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Abstract

This paper proposes a post-crisis New Keynesian model that incorporates agent
heterogeneity in borrowing and lending with a minimum set of assumptions and com-
plexity. Unlike the standard framework, this model makes the natural rate of interest
endogenous, and dependent on macroeconomic policy. We establish microfoundations
for debt deleveraging based both on the accumulation of excessive debt by households
and leverage constraints on banks, showing that they are isomorphic and thus inte-
grating two popular narratives for the crisis of 2008. The main application is to study
optimal monetary policy at the zero lower bound (ZLB). Such policy succeeds in rais-
ing the natural rate of interest by creating an environment that speeds up deleveraging
and thus endogenously shortens the crisis and the duration of binding ZLB. Inflation
should be front-loaded and overshoot its long term target during the ZLB episode.
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Fabra, Universidad de Navarra, Università di Siena, Università Cattolica del Sacro Cuore, Uppsala Universitet, Banco de España, Universidad

Carlo III de Madrid, Istanbul School of Central Banking. We also thank Nicolas Cuche-Curti, Alexander Mechanick, Sanjay Singh and Henning

Weber for comments and Alyson Price for editorial assistance. Financial support from the ERC Consolidator Grant No. 614879 (MONPMOD) is

gratefully acknowledged.

1



1 Introduction

This paper proposes a tractable post-crisis version of the canonical New Keynesian model.
By “post-crisis” we mean the period after 2008, when several central banks had to cut their
short-term interest rate to zero. While all models have shortcomings, the standard New
Keynesian model came under special criticism for a few key abstractions that proved to be
important omissions with respect to understanding some elements of the crisis. First, in its
most basic form it posits only one risk-free short-term interest rate. Second, it makes no
explicit provision for banking and it has only a single representative agent, with no distinction
between savers and borrowers. Finally, shocks are somewhat reduced form, which makes it
difficult to pinpoint the precise trigger of the crisis. The elements we intend to integrate into
the standard New Keynesian post-crisis model are designed to make up for these omissions.
We propose to do so with only a minor increment in complexity.

Our model builds on a rich literature developed before and after the crisis. The zero lower
bound on short-term nominal interest was certainly not an unfamiliar concept to economists
even before the crisis and right after it the literature has expanded on that basis very quickly.
There is now a quite large literature on monetary and fiscal policy subject to ZLB.1 Generally,
however, these papers treat the shock that drives the economy to the zero bound, i.e. the
shock to the “natural rate of interest”, as exogenous. This means that under some basic
policy specifications the duration of the trap is purely exogenous and the forces that perturb
the economy – usually preference shocks – do not interact with the policy chosen. Here,
instead, we model the origin of the crisis more explicitly making the duration of the negative
natural rate of interest – and therefore the crisis – endogenous and a function of policy.

A recent strand of the literature seeks to model in greater detail the factors that may lead
the economy against the zero bound, the very origin of the global economic crisis of 2008.
We see this literature as offering two main narratives. One powerful account holds that the
source was a deleveraging cycle on the household side. For recent theoretical contributions
inspired see e.g. Eggertsson and Krugman (2012), Hall (2011), Guerrieri and Lorenzoni
(2017) and Rognlie, Shleifer and Simsek (2014); Mian and Sufi (2011) provide extensive
empirical evidence for this mechanism.2 Another powerful narrative traces the origin of the
crisis to banking turbulence (see e.g. Curdia and Woodford, 2010, Gertler and Kiyotaki,
2010).3

Consider first the household debt-deleveraging story. First, we have a period of excessive
optimism, in which debtors borrow and spend aggressively via a process of leveraging (piling
up debt). Since one person’s debt is another’s asset, creditors have to be induced to spend
less by high real interest rates. Then comes a “Minsky moment” (Eggertsson and Krugman,
2012) when households realize that their new debt may in fact not all be sustainable, and

1See for example Eggertsson and Woodford (2003), Adam and Billi (2006), Eggertsson (2008) as pre-
crisis and Eggertsson (2011), Christiano, Eichenbaum and Rebelo (2011) and Werning (2011) for post-crisis
examples.

2See also Geanakoplos (2010) and references therein, although he, and the literature he cites, does not
emphasize the connection of the leverage cycle with the interest rate channel as we do here and as the
literature above does. Thus he does not focus as clearly on the interaction of the leverage cycle with ZLB,
which is the central theme here.

3See also Andrès et al. (2013) and De Fiore and Tristani (2012, 2013) for alternative approaches.
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we shift from leveraging to deleveraging. But the zero lower bound prevents the central
bank from cutting the interest rate enough to induce sufficient spending by low-debt agents.
Hence, one interpretation of a drop in the natural rate of interest is that debtors – as a group
– are trying to deleverage very fast, so that the real interest rate needs to go negative in
order to get the savers to spend enough to sustain full employment. A negative natural rate
of interest can make the ZLB binding, which creates problems for macroeconomic policy.
In earlier work on deleveraging, such as Eggertsson and Krugman (2012), the deleveraging
shock coincides with a sudden drop in borrowing capacity to which the borrower must adapt.
However, they posit that this adjustment takes place in only one period, “the short run”.
Here, instead, we relax this assumption so that deleveraging takes place smoothly over
several periods – determined endogenously – as a result of household’s optimal deleveraging
decisions.4

Now let us consider the banking turbulence interpretation. There is a crisis in the inter-
bank market that increases banks’ cost of funding. This might be due to shocks to banks’
capital or a need to deleverage. The banks’ capital constraint tightens during a period of
stress making them less willing to lend and triggering a downturn. In the end, however,
the mechanism through which this affects the macro economy turns out to be largely anal-
ogous to the household deleveraging thesis. Indeed we show that as regards such aggregate
variables as output, inflation and interest rate the two stories are isomorphic. From a basic
New Keynesian perspective, therefore, there is no special reason for choosing one over the
other, and we will refer to both as “dynamic deleveraging”. Our prior is that both played
an important role in the crisis.

Within our framework we generalize the standard New Keynesian (NK) prototype model
as one that involves exactly the same pair of equations, familiar to many readers, namely the
IS and the AS equations, typically summarized as follows (denoting output in log deviation
from steady state with, Ŷt, inflation with πt, the nominal interest rate with it and steady
state inflation by π)

Ŷt = EtŶt+1 − σ(it − Et(πt+1 − π)− rnt )

πt − π = κŶt + β(πt+1 − π)

where β, σ, κ > 0 are coefficients.5 The only difference between the present model and
the benchmark is that rnt (which is interpreted as the natural rate of interest) is now an
endogenous variable that depends on the level of private debt. In this paper we show how
this variable is determined in equilibrium by a system of equations that depends, among
other things, on households’ indebtedness and on the spread between the risk-free interest
rate and the risky, hence higher rate charged to borrowers. In the case of households’ debt-
deleveraging, this corresponds to a “shock” to the “safe level” of debt, giving households

4Here we do expound one suggested extension discussed in the Web Appendix of Eggertsson and Krugman
(2012), but this delivers a less compact model owing to a different specification of preferences and production.
Moreover, they do not provide explicit microfoundations for the banking sector, which in our case allows
us to nest both the household deleveraging story and the banking story in the same framework. Finally,
they are silent on the welfare implications of alternative policies. Another closely related paper is Curdia
and Woodford (2010), which we also build upon. Their focus, however, is mostly on shocks to the aggregate
banking system not on sub-optimal monetary policy at the ZLB.

5These equations are illustrated in Clarida, Gal̀ı and Gertler (1999), Woodford (2003) and Gal̀ı (2008)
among others.
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the incentive to pay down their debt to a new steady state. In case of banking turbulence,
it corresponds to a shock to the required leverage ratio or the cost of equity financing
curtailing banks’ lending to a new steady state. We show that the natural rate of interest
can be transitorially negative.

One relatively minor difference from the standard one is that ours is written in terms
of inflation in deviation from steady-state inflation, π, which may be positive: a reasonable
number, for example, would be 2% in the US. What this implies is that the recession at the
zero lower bound does not necessarily require actual deflation, only inflation below the target
of the central bank. Some authors contend that the lack of deflation during the post-2008
crisis represents a major failure of the canonical New Keynesian model. Our proposed model
fixes this problem.

A more important advantage of our framework is that the explicit introduction of bor-
rowing and lending allows a more disciplined calibration of the shock that triggered the
Great Recession. In much of the earlier literature (e.g. Eggertsson, 2011) the driving force
is assumed to be an unobserved preference shock, calibrated so as to generate the Great
Recession. Here, instead, we have two more observables: first, the endogenous level of debt
held by the households and, second, a borrowing rate that differs from the risk-free interest
rate. These two variables allow relatively straightforward calibration of the shocks, as we will
see. We can then ask if the shocks calibrated to match these new observables can generate
the Great Recession. The short answer is yes.

The paper’s main contribution of the paper, in our view, consists in this parsimonious
framework, which generalizes the canonical New Keynesian model but at the same time
speaks more directly to the crisis of 2008. This framework can be useful for a number of
applications (see, for instance, the effect of negative interest rates on reserves in Eggertsson,
Juelsrud and Wold, 2017). The principal application, however, is our revisitation of the
classical question of optimal monetary policy when the zero lower bound is binding – a
situation faced by much of the industrial world after 2008.

The first conclusion is that the duration of a negative natural rate of interest and of
the ZLB is now endogenous, rather than depending only on exogenous preference shocks
or an implicitly specified “short run”. Further, the duration depends on the policy stance.
Under a monetary policy regime that targets inflation high enough to avoid the ZLB, for
example, the economy natural rate of interest will last less than if the policy stance is
insufficiently stimulating. The intuition is simple. In a recession there is a drop in overall
income undercutting borrowers’ ability to pay down their debt, so deleveraging will be slower
than if recession is avoided by aggressive monetary and fiscal stimulus. Since it is the
deleveraging process that drives the decrease in the natural rate of interest, this affects how
long remains below its steady-state.

The second key result is a partial corollary of the first. Endogenous deleveraging will in
general amplify the effect of policy at the zero bound. This is because now policy will not
only mitigate the crisis today, as the literature emphasizes but also shorten its duration by
impinging directly on the natural rate of interest. Consider the nominal interest rate path
under a policy to stabilize inflation and the output gap under either dynamic deleveraging or
exogenous preference shocks. We find that optimal policy prescribes shorter duration at the
zero bound than under dynamic deleveraging under exogenous preference shocks, precisely
because it has a direct effect on the natural rate of interest. Optimal policy is powerful
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enough to “jump start” the economy and thus leads to a more rapid normalization of the
nominal rate.

The third result follows from the explicit derivation of a social welfare function in our
heterogenous agent model. While the standard New Keynesian model considers only output
and inflation. Our social welfare function involves an additional term because we have
different types of agents, i.e. borrowers and savers, with incomplete insurance between them.
By comparison with the standard objective, this additional term gives the policymaker an
even stronger reason to aggressive countercyclical policy at the ZLB. For one thing, borrowers
tend to suffer more in a debt-deleveraging recession and thus to have higher marginal utility
of income. Meanwhile borrowers have more to gain from inflationary policy than savers,
as inflation reduces their real debt, lowers the real interest rate on it moving forward, and
increases their labor income when the marginal value of extra income is especially high for
borrowers.

A fourth result is that in a liquidity trap under dynamic deleveraging optimal monetary
policy prescribes excess inflation, and possibly output above potential, well above the infla-
tion target, even while the zero bound is binding and the natural rate of interest negative. In
part, this is because social welfare now takes account of the social benefit of redistribution
in response to the shock, but also to some extent because an endogenous natural rate of
interest prescribes even more aggressive policy action than in the standard model so as to
speed up the recovery.

The paper is organized as follows. Section 2 describes dynamic deleveraging in a simple
endowment economy to clarify some key assumptions and then discusses the general model
and its log-linear approximation. Section 3 illustrates the calibration of the model and
shows that when it is fed with debt deleveraging shocks it can capture the movements of key
macrovariables in the US during the Great Recession. Section 4 describes the application that
we run here. Subsection 4.1 studies the positive implications of dynamic debt deleveraging
and contrasts this with the standard NK model; Subsection 4.2 characterizes normative
aspects of the model, analyzing optimal monetary policy under commitment. Section 5
concludes.

2 The model

2.1 Dynamic deleveraging in an endowment economy

First, let us consider a simple endowment economy in order to clarify some key assumptions
of the general model. A representative borrower (b) and saver (s) maximize utility

Et

∞∑
T=t

(βj)T−t logCj
t with j = b or s

where Cj
t is consumption and βj a discount factor (with 0 < βb < βs ≤ 1). The optimization

problem is subject to the budget constraint:

bjt

1 + rjt
= bjt−1 + Cj

t −
1

2
Y + T jt (1)
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where bjt is a one-period risk-free real debt contracted in period t (inclusive of interest pay-
ment), rjt is the real interest rate, Y is the endowment and T jt is a lump-sum tax.

The gross risk-free real interest rate is 1 + rt and each agent j faces the interest rate
function

1 + rjt =

{
1 + rt if bjt ≤ b̄t

(1 + rt)(1 + φ(bjt − b̄t)) if bjt > b̄t
. (2)

Figure 1 plots function (2): if the borrower’s debt is lower than b̄t then he faces the
risk-free rate 1 + rt, if greater he pays a premium 1 + φ(bbt − b̄t). This is a generalization
of the strict borrowing constraint of Eggertsson and Krugman (2012) obtained in the limit
when φ→∞ so that bjt ≤ b̄t at all times.

Equilibrium is a collection of stochastic processes {Cb
t , C

s
t , r

b
t , r

s
t , b

b
t} satisfying

1

Cs
t

= βs(1 + rst )Et
1

Cs
t+1

(3)

1

Cb
t

= βb(1 + rbt )Et
1

Cb
t+1

(4)

1 + rbt =

{
1 + rst if bbt ≤ b̄t

(1 + rst )(1 + φ(bbt − b̄t)) if bbt > b̄t
(5)

Cs
t + Cb

t = Y (6)

bbt = (1 + rbt )[b
b
t−1 + Cb

t −
1

2
Y ] (7)

where (3) and (4) are the consumption Euler equations of the saver and of the borrower,
respectively, (5) determines the spread between the rate charged to the borrower and that
paid to the saver, (6) is the resource constraint and (7) the budget constraint of the borrower.6

The steady state is apparent from the first two equations yielding 1 + rs = (βs)−1 and
1+rb = (βb)−1. This is enough to pin down the steady-state equilibrium debt via (5) implying

bb = b̄+ φ−1

(
βs

βb
− 1

)
which is shown as point A in Figure 1. The household borrows above the threshold b̄ to a
level such that 1 + rb equals the inverse of the borrower’s discount rate. This is in contrast
to Eggertsson and Krugman (2012), where φ → ∞, the debt limit is binding, bb = b̄, and
the borrower is at a corner solution.

6The first-order conditions are derived by writing up a Lagrangian. Here we make the simplifying as-
sumption that the borrower takes bbt in the interest-rate premium function as exogenous (corresponding to
aggregate debt in the economy). In the general model we allow the spread function to depend on both
individual and aggregate debt. We also make the assumption that the spread between the two interest rates
is rebated lump sum to the saver which is why no lump sum transfer appears in (7) and assume that the
banks are owned by the savers.
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A

B←−

C

1 + rs

1 + rb

1 + rbt

b̄low bblow b̄high bbhigh bbt

Figure 1: Plot of the function characterizing the cost of borrowing: equation (2) when b̄ = b̄high and
when b̄ = b̄low with b̄high > b̄low. The initial steady state is A when b̄ = b̄high. As b̄ moves to b̄low, the
equilibrium moves to B and then to the final steady state C along the shifted line. Note that bbhigh (bblow) is

the steady-state level of debt when the threshold is b̄high (b̄low).

The key thought experiment in the paper is that the debt limit goes from some “high”
level to a “low” level, i.e. b̄high → b̄low, an experiment sometimes referred to as a Minsky
moment. At this point, the borrower can no longer maintain his outstanding debt unless
he pays a higher interest rate premium on it. This is shown in Figure 1, where in response
to the shock the interest rate increases as is shown by point B. In the previous literature,
such as Eggertsson and Krugman (2012), by assumption, the household pays down its debt
in one period. Here, instead, the borrower repays over a period of time that is endogenously
determined. As Figure 1 shows, the shock triggers a rise in the interest rate faced by the
borrower if he leaves his debt unchanged. This gives the borrower an incentive to pay down
debt and the optimal repayment path is determined by (3)-(7), the solution of which we turn
to next. The dynamic deleveraging is what moves the borrower from point B down to point
C in Figure 1, restoring an interest rate that is equal to the inverse of his discount factor,
(βb)−1.

Figure 2 shows the path of each of the endogenous variables for a finite φ.7 The delever-
aging is shown in the last panel, where private debt falls from 108% to 88% of output.8 The
borrower cuts consumption immediately and gradually pays down the debt. As all output
is consumed, the fall in the borrower’s consumption needs to be offset by an increase in the
saver’s. This is achieved by a reduction in the interest rate. The interest rate paid to the
saver may even turn negative if the shock to b̄ is large enough. Since the saver’s rate is the
risk-free short-term interest rate, which in a more general setting corresponds to the nominal
interest rate set by the central bank, this has major implications for monetary policy, as we

7Illustrative parameters assumed: φ = 0.0078, Y = 1, βb = 0.9796, βs = 0.9852, b̄high = .9773, b̄low = .78.
The model is log-linearized around the steady state to generate the figures.

8It should be noted that the shock b̄ expressed as a ratio of output –the variable b̄gdp− moves from 97.73%
to 78%.
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Figure 2: Responses following a deleveraging shock: b̄ moves from b̄high to b̄low, in the endowment-economy
model. Variables are: consumption of borrowers (Cb), consumption of savers (Cs), real interest rate on
borrowing (rb), real interest rate on saving (rs), debt of borrowers with respect to output (bgdp), the risk-
free borrowing threshold with respect to output (b̄gdp). Cb, Cs, are percentage deviations with respect to
the initial steady state; rb, rs, bgdp and b̄gdp are percent and at annual rates.

will soon see.
A few comments are in order here. First, since the speed of deleveraging – as determined

by how long the agents take to reach their new level of steady-state debt – is optimally
determined, it is not hard to imagine that this speed may be affected by macroeconomic
policy, an insight soon confirmed once production and macroeconomic policy are made en-
dogenous. This implies that the duration of the negative real interest rate is endogenous,
and this will be critical. Second, nothing in the experiment depends on the gap between
βb and βs being large, as shown in Figure 1. Even if the gap is small, as long as b̄high falls
to b̄low, a spread opens to the same extent and the borrower deleverages. In other words,
the dynamics of deleveraging are independent of the difference between βb and βs; only the
steady state depends on this difference. Even if βb → βs the same thought experiment can
be performed. This observation is useful because it is convenient to assume that βb → βs

to derive social welfare.9 When βb → βs borrowing and lending are no longer motivated by
differences in discount factors but instead by the initial asset distribution (some agents are
born with debt, others with assets).10

9Indeed when βb < βs aggregate welfare cannot be written in a recursive way.
10In our example we can assume that debtors start from a level of debt bb = b̄high. Observe that while

there are initial conditions for debt consistent with lower values of the debt, it can be no higher than this
value in steady state. Taking this initial value as given, then, and assuming a debt deleveraging shock, the
new steady state will be uniquely defined as bb = b̄low, precisely as in our exercise above.
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2.2 General environment

We now turn to a more general environment. On a continuum between 0 and 1, a fraction
χ of borrowers (b) and a fraction 1− χ of savers (s) maximize expected utility

Et

∞∑
T=t

(βj)T−t

[
1− exp(−zCj

T )− (LjT )1+η

1 + η

]
with j = s or b (8)

where Et is the expectation operator, z a positive parameter, βj the discount factor with
0 < βb ≤ βs < 1 and Cj

t is aggregate consumption

Ct ≡
[∫ 1

0

Ct(i)
θ−1
θ di

] θ
θ−1

where Ct(i) is the consumption of good of variety i, θ > 1 is the intratemporal elasticity of
substitution between goods and Lj is hours worked subject to

Bj
t

1 + ijt
= Bj

t−1 + PtC
j
t −W

j
t L

j
t −Ψj

t − Γjt + T jt (9)

where Bj is nominal debt, Pt the price index, W j
t the wage for type j labor, Ψj

t is firms’
profits, Γjt profits of financial intermediation and T jt lump-sum taxes.

Because debt is nominal, monetary policy impacts on the real value of debt through both
inflation and the nominal interest rate. Utility is exponential in consumption, as is common
in applied finance (see e.g. Calvet, 2001) to simplify aggregation.

The nominal interest rate ijt is specific to households. All savers deposit their savings
in banks at the riskfree rate it while borrower j raises funds from banks at an interest rate
given by

1 + ijt = (1 + it)φ

(
bjt
b̄t
,
bt
b̄t
, ζt

)
(10)

which is proportional to the saving rate through a premium determined by the spread func-
tion φ(·, ·, ·).11 In (10), this function is written in a general form (examples are provided in
Appendix A using different banking models). The results do not depend on those details.

The spread function involves three terms which we discuss in turn. The spread, or
borrowing premium, depends on agent j’s real debt, defined as bjt ≡ Bj

t /Pt, in reference
to b̄t, the maximum risk-free debt. The idea is that each agent has a debt capacity above
which the bank needs to be compensated for default risk. According to the second term

the spread is also a function of the aggregate debt (per borrower), bt =
(∫

χ
bjtdj

)
/χ, which

is also in reference to the debt capacity, so that there is risk associated with bank lending
independent of the idiosyncratic risk of individual borrower. If aggregate borrowing is high,
say, then every borrower will default at a higher rate for a given level of debt. One can read
this as meaning that when aggregate borrowing is high banks have more limited resources

11A spread function is usually assumed in open-economy models to obtain stationarity of external debt,
see among others Schmitt-Grohe and Uribe (2003), Benigno (2009) and Mehrotra (2018).
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to monitor loans. Relative to the first term, the key difference is that in making their choices
the agents take the evolution of aggregate debt as exogenous. Finally, there is an exogenous
shifter, ζt, capturing other features of a banking model such as leverage ratio or cost of equity
financing of banks (see Appendix A).

The consumption Euler equation of savers is

Uc(C
s
t ) = βs(1 + it)Et

{
Uc(C

s
t+1)

Pt
Pt+1

}
, (11)

which is standard. Borrowers, instead, face the borrowing premium and internalize the
effects of their borrowing decisions on spreads. Borrower j satisfies the consumption Euler
equation:

Uc(C
j
t ) = βb

(1 + ijt)

1− ε
(
bjt
b̄t
, bt
b̄t
, ζt

)Et{Uc(Cj
t+1)

Pt
Pt+1

}
, (12)

where ε (·; ·, ·) is the elasticity of the premium with respect to individual real debt

ε

(
bjt
b̄t
,
bt
b̄t
, ζt

)
≡ bjt
b̄t

φbj
(
bjt
b̄t
, bt
b̄t
, ζt

)
φ
(
bjt
b̄t
, bt
b̄t
, ζt

) .

If φ(·, ·, ·) is independent of the agent’s specific debt level, then ε (·; ·, ·) = 0 and the borrowers’
Euler equation is of the same form as in Curdia and Woodford (2010, 2011) where the spread
depends only on aggregate debt. In equilibrium, borrowers are identical so that bjt = bt and
(12) simplifies to

Uc(C
b
t ) = βb

(1 + ibt)

1− ε
(
bt
b̄t
, bt
b̄t
, ζt

)Et{Uc(Cb
t+1)

Pt
Pt+1

}
, (13)

and (10) simplifies to

(1 + ibt) = (1 + it) · φ
(
bt
b̄t
,
bt
b̄t
, ζt

)
(14)

where (1 + ijt) = (1 + ibt).
12

A positive spread implies profits from financial intermediation denoted by

Γt =

∫
χ

(
1

1 + it
− 1

1 + ijt

)
bjt .

12We can combine equations (11), (13) and (14) in the steady state to obtain some restrictions on the
spread function βs/βb = φ

(
b/b̄, b/b̄, ζ

)
/
{

1− b//b̄ · φbj
(
b/b̄, b/b̄, ζ

)
/φ
(
b/b̄, b/b̄, ζ

)}
. In general, and out of

the steady state, we assume borrowers can never borrow at a rate lower than the risk-free interest rate, i.e.,
φ(·, ·, ·) ≥ 1. We assume that the borrowing premium is non-decreasing in the amount of borrowing of agent
j, i.e. we assume that the derivative of the function with respect to the first argument is non-negative,
φbj (·, ·, ·) ≥ 0. Moreover, the borrowing premium is also non-decreasing in aggregate borrowing, meaning
that the derivative of the function with respect to the second argument is non-negative φb(·, ·, ·) ≥ 0. Since
savers are more patient than borrowers, i.e. βs > βb, then φ( b

∗

b̄
, b

∗

b̄
, ζ) > 1 and φbj ( b

∗

b̄
, b

∗

b̄
ζ) > 0 where b∗ is

the steady-state equilibrium debt and ζ is the steady state of ζt. Therefore, in a steady state in which βs > βb,
borrowers face a higher interest rate than savers, and the premium at which they borrow is increasing in
their individual debt position. Finally, we assume that when ζt is at its steady-state level ζ and b ≤ b̄ the
borrowing premium and its derivative are such that φ(1, 1, ζ) = 1 and φbj (1, 1, ζ) = 0.
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Banks raise funds from the savers at the risk-free nominal interest rate it to lend to borrowers
at the higher interest rate ijt (see Appendix A). The cost function (10) arises as a techno-
logical constraint on the financial intermediation of the banks. Bank profits are rebated to
the owners, who are the savers.13

The optimal supply of labor implies

(Ljt)
η

z exp(−zCj
t )

=
W j
t

Pt
j = s or b. (15)

Turning to the production side, we assume a continuum of firms of measure one, each
producing a single good. The production function is linear in labor, Y (i) = L(i). A key
simplification of the model is that each agent receives a constant fraction of total income, in
contrast to existing work on heterogeneity in New Keynesian models where income shares
vary according to their labor response (see e.g. Eggertsson and Krugman, 2012, Curdia and
Woodford, 2010, 2011). The assumption that generates constant income shares is that the
aggregate labor input of the firm is a Cobb-Douglas function of the individual agents’ labor
L(i) = (Ls(i))1−χ(Lb(i))χ.

Given this condition, it can be shown that each agent is paid the same aggregate wage
W s
t L

s
t = W b

t L
b
t = WtLt where Wt ≡ (W s

t )1−χ(W b
t )χ.14 This, together with the assumption of

exponential utility, implies that for j = s, b (15) can be aggregated with weights 1 − χ and
χ to yield aggregate labor supply

(Lt)
η

z exp(−zCt)
=
Wt

Pt
, (16)

where Ct is aggregate consumption given by Ct = (1− χ)Cs
t + χCb

t . Aggregate output is

Yt = (1− χ)Cs
t + χCb

t . (17)

We can now formulate the firm’s problem as equivalent to hiring the labor composite Lt
from a common labor market at wage Wt so that the firms’ pricing problem can be formulated
as in the standard New Keynesian model.15 Firms are subject to price rigidities, as in the
Calvo model. A fraction (1− α) of firms with 0 < α < 1 change their price, which remains
in effect at time T with a probability αT−t. This price is indexed to the inflation target over

13The quantitative results can change with alternative assumptions as explained later, but not the quan-
titative results. We could also add a general cost of financial intermediation that absorbs real resources.
Under the assumption that this cost is second-order, the log-linear approximation of the model equilibrium
conditions is not going to be affected at all. However, the second-order approximation of the welfare could
contain additional terms where the intermediation cost is a function of aggregate debt. See also Curdia and
Woodford (2010).

14This can be shown by solving the static cost minimization problem for firm i, i.e. minLs
t ,L

b
t
{W s

t L
s
t (i) +

W b
t L

b
t(i)} s.t. (Ls(i))1−χ(Lbt(i))

χ = L̄ and noting that market clearing requires
1∫
0

Ls(i)di =
∫ 1

χ
Ls(j)dj =

(1 − χ)Lst where i denotes the index of firms, of measure 1 and j denotes the index of savers, who are of
measure 1−χ. The problem above implies a labor demand for each type of labor of the form Lst/Lt = Wt/W

s
t

and Lbt/Lt = Wt/W
b
t .

15To see this, use footnote 14 to observe that we can write W s
∫
Ls(i)+W b

∫
Lb(i) = (1−χ)W s

t L
s
t+χW

b
t L

b
t

and therefore that W s(i)
∫
Ls(i) +W b(i)

∫
Lb(i) = WtLt using Lst/Lt = Wt/W

s
t and Lbt/Lt = Wt/W

b
t .
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the period given by ΠT−t. Adjusting firms choose prices to maximize the present discounted
value of the profits assuming the prices chosen remain constant. The discounting of profits
depends on firms’ ownership. The simplest assumption is that firms are under the control
of the saver, but an alternative interpretation of what follows is the special case in which
βs → βb = β. It should be noted that this is the first instance in which this restriction is
imposed. Later it will be also useful to derive a recursive representation of utility to perform
welfare analysis.16

The present discounted value of profits is:

Et

∞∑
T=t

(αβ)T−tλT

[
(1 + τ)ΠT−tPt(i)

PT
YT (i)− WT

PT
YT (i)

]
where λt is a linear combination of the marginal utilities of the real income of the two agents,
λt = [(1 − $)Uc(C

s
t ) + $Uc(C

b
t )], where 1 − $ and $ are the profit shares of savers and

borrowers, respectively, with 0 ≤ $ ≤ 1 and τ is a constant subsidy on firms’ revenues. The
first-order condition of the optimal pricing problem implies

P ∗t
Pt

= µ

Et

{∑∞
T=t(αβ)T−tλT

(
PT
Pt

1
ΠT−t

)θ
WT

PT
YT

}
Et

{∑∞
T=t(αβ)T−tλT

(
PT
Pt

1
ΠT−t

)θ−1

YT

} , (18)

where µ ≡ θ/[(θ − 1)(1 + τ)] and in equilibrium Pt(i) = P ∗t , since all firms adjusting their
price fix it at the same level. The remaining fraction α of firms indexes to the inflation target
Π̄, so the law of motion of the aggregate price index is given by

P 1−θ
t = (1− α)P ∗1−θt + αP 1−θ

t−1 Π1−θ. (19)

Our assumptions concerning preferences and production simplify the aggregate-supply
equation by netting out any implications of the heterogenous-agent model. The firms’ real
marginal cost is given by the real wage W/P which, using equations (16) and (17), can be
written as function of output

Wt

Pt
=

(Yt∆t)
η

z exp(−zYt)
, (20)

using (17) and Lt = Yt∆t where ∆t ≡
1∫
0

(
Pt(i)
Pt

)−θ
di follows the law of motion

∆t = α

(
Πt

Π

)θ
∆t−1 + (1− α)

(
1− α

(
Πt
Π

)θ−1

1− α

) θ
θ−1

. (21)

16Assuming that βs → βb = β has implications for the values taken by the function φ(·, ·, ·) in the steady
state: in particular φ(1, 1, ζ) = 1 and φbj (1, 1, ζ) = 0, implying that in the steady state there is no spread
between the borrowers and the risk-free interest rate and that ε(1, 1, ζ) = 0. We provide an expression for
the more general case in Appendix C, which leads to identical linearized equations, as long as the firm is
using the savers’ discount factor in its decision.
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Combine (18), (19), (20) and Yt∆t = Lt to yield aggregate supply

(
1− α

(
Πt
Π

)θ−1

1− α

) 1
θ−1

=

Et

{∑∞
T=t(αβ)T−tλT

(
PT
Pt

1
ΠT−t

)θ−1

YT

}
Et

{∑∞
T=t(αβ)T−tλT

(
PT
Pt

1
ΠT−t

)θ
µ

∆η
TY

1+η
T

z exp(−zYt)

} . (22)

To complete the characterization of the model we specify the distributive details of divi-
dends and fiscal policy. The way wages and profits are distributed is essential to the policy
transmission mechanism. Real dividends are

divt = (1 + τ)Yt −
Wt

Pt
Lt

which using (20) and Yt∆t = Lt can be expressed as

divt = Yt(1 + τ)− Y 1+η
t ∆1+η

t exp(zYt)

z
. (23)

The profits distributed to borrowers and savers are Ψb
t = ($/χ)·divt and Ψs

t = (1−$/χ)·divt,
respectively, reflecting ownership according to $. The government raises taxes τYt to cover
the firms’ subsidies levied in the proportion T bt = ($/χ)(τYt) and T st = (1−$/χ)(τYt).

In what follows, we assume that $ = χ so that firms’ profits and taxes are proportional
to the size of each group in the population. The relevance of this assumption is discussed in
the conclusions. Intermediation profits are all rebated to the savers, i.e. Γbt = 0.

Using (23), the flow budget constraint of borrowers (9) can now be expressed as

bt
1 + ibt

=
bt−1

Πt

+ Cb
t −

(
1− $

χ

)
Y 1+η
t ∆1+η

t exp(zYt)

z
− $

χ
Yt. (24)

An equilibrium is given by the set of stochastic processes {Cb
t , C

s
t , it, i

b
t , bt, Yt,Πt, λt,∆t}∞t=t0

that solves the equilibrium conditions (11), (13), (14), (17), (21), (22), (24) together with
a policy rule, the definition λt = [(1 − $)Uc(C

s
t ) + $Uc(C

b
t )] and for given exogenous se-

quences
{
b̄t, ζt

}∞
t=t0

, considering the zero lower bound on the nominal interest rate it ≥ 0. See
Appendix B for further details on the recursive formulation of the aggregate-supply equation.

2.3 Log-linear approximation of the equilibrium conditions and a
parallel to the standard New Keynesian model

The non-linear equilibrium conditions can be log-linearized into two blocks: (i) an aggregate
demand block of five equations, namely the consumption Euler Equation for the saver (25)
and the borrower (26), a spread function relating the borrowing and saving rates (27), the
borrower’s budget constraint (28) and the aggregate resource constraint (29); and (ii) an
aggregate supply block consisting of the New-Keynesian Phillips curve (30):

EtĈ
s
t+1 − Ĉs

t = σ[̂ıt − Et(πt+1 − π)] (25)
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EtĈ
b
t+1 − Ĉb

t = σ
[
ı̂bt + υ

(
b̂t − d̂t

)
− Et(πt+1 − π)

]
(26)

ı̂bt = ı̂t + ϕ(b̂t − d̂t) (27)

b̂t =
1

β
b̂t−1 +

b̃

β
(βı̂bt − (πt − π)) + (1 + i)Ĉb

t − (1 + i)

(
1 +

(
1− $

χ

)
(η + σ−1)

)
Ŷt (28)

Ŷt = χĈb
t + (1− χ)Ĉs

t (29)

πt − π = κŶt + βEt(πt+1 − π) (30)

where we have defined the variables ı̂t ≡ ln(1 + it)/(1 + i), ı̂bt ≡ ln(1 + ibt)/(1 + i),
πt ≡ ln Πt, Ĉ

j
t ≡ (Cj

t − Cj)/Y for each j = s, b, b̂t ≡ (bt − b̄high)/Y , d̂t ≡ (b̄t − b̄high)/Y +
(ζt − ζ)/ζ and Ŷt ≡ (Yt − Y )/Y. The coefficients of the model are defined as σ ≡ 1/(zY ),
υ ≡ Y/b̄high · (φbi,b(1, 1, ζ) + φbi,bi(1, 1, ζ)) > 0, ϕ ≡ Y/b̄high · φb (1, 1, ζ) > 0, b̃ ≡ b̄high/Y and
κ ≡ (1− α)(1− αβ)(η+ σ−1)/α.17 These coefficients are written under the assumption that
βb → βs. We report the more general case in Appendix D.

Equations (25)-(30) determine the equilibrium allocation for {πt, Ĉb
t , Ĉ

s
t , Ŷt, ı̂

b
t , ı̂t, b̂t}∞t=t0

given the specification of monetary policy, an exogenous process d̂t and initial condition
b̂t0−1. Movements in d̂t isomorphically capture movements in b̄t and ζt, i.e.

d̂t ≡ (b̄t − b̄high)/Y + (ζt − ζ)/ζ

highlighting the result we emphasized in the introduction: that is, that a household debt
deleveraging shock and a banking shock have the same effect on aggregate dynamics. We
will be considering a permanent debt deleveraging shock dhigh− > dlow, which can then
be explained either by an abrupt change in the perceived safe level of households’ debt
b̄high− > b̄low or by an increase in the leverage requirement of banks or its equity cost
ζhigh− > ζ low (see Appendix A for details of the microfoundation of the banking model).

To obtain a parallel to the standard New Keynesian model combine equations (25), (26),
(27) and (29) to yield

Ŷt = EtŶt+1 − σ(̂ıt − Et(πt+1 − π)− rnt ) (31)

where rnt is

rnt ≡ −χ(υ + ϕ)
(
b̂t − d̂t

)
. (32)

Equation (31) is the same as the IS equation of the standard model, except that in that
model rnt is exogenous. Here, instead, it is endogenously determined by (32), which in turn
is specified by the aggregate-demand block (25)-(29). Aggregate demand is still determined
by the real interest rate and expected future income, but the level of private indebtedness
shifts this relationship.

The AS equation is exactly the same as in the standard model shown in (30), in contrast
to other recent extensions of the NK models (see e.g. Curdia and Woodford, 2010). This

17In the approximation we have further normalized ζφbi,ζ(1, 1, ζ) = −Y/b̄high·(φbi,b(1, 1, ζ)+φbi,bi(1, 1, ζ))
and Y/b̄high · φb (1, 1, ζ) = −ζφζ (1, 1, ζ) .
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Table 1: Parameters under Benchmark Model

Parameter Value Source or Target

Intertemporal elasticity of substitution in consumption σ = 0.66 Smets and Wouters (2007)
Inverse of the Frisch elasticity of labor supply η = 1 Justiniano et al. (2015)
Slope of the AS equation κ = 0.02 Eggertsson and Woodford (2003)
Share of borrowers χ = 0.61 Justiniano et al. (2015)
Steady-state inflation rate Π = 1.005 Corresponding to 2% at annual rates:

Justiniano et al. (2015)
Intertemporal discount factor β = .9963 Match real interest rate of 1.5%:

Domeij and Ellingsen (2015)
Elasticity of substitution among varieties of goods θ = 7.88 Rotemberg and Woodford (1997)
Parameter of spread function ϕ = 0.0078 Match the data
Parameter of the borrowers’ Euler equation υ = 0.0225 Match the data.
Initial real debt b̄high = 4.0869 Initial debt over GDP at 107.73%
Final real debt b̄low = 3.3384 Final debt over GDP at 88%
Profit shares of borrowers $ = χ

result depends essentially on our assumption on preferences and production, which implies
that the wealth of each agent varies proportionally with output.

The natural rate of interest, defined in (32), is a useful concept here as in the standard
New Keynesian model. Conditional on the level of debt b̂t−1 at time t, it corresponds to the
real interest rate with prices flexible from period t onwards. As in the standard model, it
can be interpreted as the real interest rate that the central bank would like to achieve at
time t to stabilize output going forward.

3 Calibration: matching the Great Recession

We now show how our model generates movements in key variables of approximately the
same size as in the U.S. during the Great Recession in response to a debt deleveraging shock.
Where possible, our parameters are drawn from the existing literature as in Table 1. What
remains to be chosen is the size of the shock (dhigh to dlow), as well as ϕ and υ. To determine
these parameters, we compare the model variables for household debt, bt, and the borrowing
rate, ibt , to their respective counterparts in the data. An important choice in the calibration
is the choice of dhigh and dlow, which reflects either a reversion in the household debt limit or
a banking shock as trigger of the crisis. We choose dhigh so that equilibrium debt corresponds
to the level of household debt accumulation prior to the crisis of 2008. We pick dlow so that
it corresponds to the value of private debt the quarter before the Federal Reserve started
raising rates in 2015.18 We choose (ϕ, ν) so as to minimize the mean squared errors of the
model with respect to the data with results reported in Table 1 19 For monetary policy, we
assume that the central bank successfully targets 2 percent inflation unless it is precluded
from doing so by the ZLB (in which case it = 0 and πt ≤ 2%).

The top charts in Figure 3 show time series data on household debt and borrowing rate
(dashed line) in comparison with the model output (solid line). As noted, the values of

18For a justification of this strategy see the Appendix E.
19See Appendix E for details.
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Figure 3: The top charts show the dynamic of nominal debt as a percentage of GDP and the dynamic of
the borrowers’ interest rate implied by the model. The bottom charts plot the model impulse responses of
inflation, output gap, and savers’ interest rate following the deleveraging shock. The continuous blue line
displays the impulse response function implied by the model and the dashed red line displays the empirical
counterparts. All variables are in %.

(dhigh, dlow, ϕ, ν) have been chosen to match the empirical data.
The lower charts in Figure 3 compare data and model for output, inflation and interest

rate, which we have not tried to match directly, denoting the time at which the reversion
in the debt limit occurs with a dashed line. First, we see that the debt deleveraging shock
generates enough downward pressure on the nominal interest rate to make ZLB binding.
Second, the resulting recession in output is of roughly the same severity as in the data.
Third, the model generates a drop in inflation; actual deflation appears only in a single
quarter, but the rate then remains below target until the ZLB ceases to be binding. In
short, the model generates a benchmark that broadly matches the US data following the
crisis of 2008. It now becomes interesting to explicitly uncover the underlying dynamics that
generate this outcome and explore the role for policy.

Before proceeding, it is worth highlighting some features of the data that the model
misses. The short-term nominal interest rate starts to rise at the end of 2012 in the model
so the recession lasts roughly 3 years. Although the actual recession (measured as deviation
of output from trend) did not last much longer than this, the upper charts show that the
short-term nominal interest rate remained at zero until the end of 2015, three full years
longer. One reason for this failure of the model is that the spread between the borrowing
and lending rate was fairly low and constant from 2012 on, which the model interprets as
meaning that there is no longer need for negative real rates to achieve the inflation target.
Adding more internal propagation to the model may resolve this issue, as it corresponds to
the most stripped-down version of the New Keynesian model, which tends not to generate
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Figure 4: Responses following a deleveraging shock when the central bank can target constant inflation
without (line “Inflation Targeting without ZLB”) and with (line “Inflation Targeting with ZLB”) taking
into consideration the ZLB. Variables are: output (Y ), inflation rate (π), natural rate of interest defined
as in (32) (rn), nominal interest rate on borrowing (ib), nominal interest rate on saving (i), aggregate debt
over GDP (bgdp), consumption of borrowers (Cb), and consumption of savers (Cs). Y , Cb and Cs are in
percentage deviation with respect to the steady state; π, rn, ib, i and bgdp are in percent and at annual rates.

persistent responses to shocks. Another way to explain why the lift-off comes earlier than in
the data is that our model disregards some secular factors that lengthen the duration of the
ZLB, a theme of the recent literature on secular stagnation.20 Under that interpretation, the
dynamics can be interpreted as specific to the financial crisis, which could be layered on top
of the slower-moving forces considered in the secular stagnation literature.

4 Main results

In the previous Section we saw that the model can generate a recession comparable to
the U.S. Great Recession using data on household debt and borrowing rates to calibrate
the trigger shock. The present Section is divided into two parts. Section 4.1 presents the
positive analysis on the role of endogenous debt deleveraging in determining the depth and
the duration of the recession. Section 4.2 offers a normative analysis of optimal monetary
policy, highlighting that endogenous deleveraging calls for more aggressive policy than would
be suggested by the standard New Keynesian model.
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4.1 Positive analysis: dynamic debt deleveraging and the ZLB

In the standard New Keynesian account (see e.g. Eggertsson and Woodford, 2003) the
duration of the Great Recession is purely exogenous; that is, it is attributed to the exogenous
preference shocks that drive the natural rate of interest temporarily into negative territory.
In our framework, by contrast, the initial impulse is given by the extent to which private
debt exceeds the level considered as safe, or alternatively by how overleveraged the banking
sector is. We assume that the realization of this shock is immediate, so the duration of the
crisis is endogenously determined as a function of households’ deleveraging choices. Unlike
the standard account, then our version comprises the natural rate of interest and the depth
and duration of the recession.

To understand how the deleveraging process propagates the recession, it is helpful to
solve the model without imposing the ZLB. In this case, targeting inflation at 2% replicates
flexible price allocation, which is analogous to the simple endowment example posited at
the beginning of the paper. Given the preference and technology specification, (potential)
output remains at the steady state as shown in the top panel in Figure 4. However, other
variables move. There is an increase in the spread between the borrowing and the saving
rate, ibt and it (middle charts in Figure 4), triggered by the exogenous shock dt. In response
the borrowers find it optimal to start deleveraging so we see a decline in their outstanding
debt bt in the third chart in the middle row. How do the borrowers deleverage? They can
cut consumption, Cb

t , and increase hours worked, Lbt . This is perfectly offset by a decrease
in savers’ hours worked and an increase in their consumption. It is clear why the borrowers
decide to deleverage: They are facing higher borrowing costs. But why should the savers
decide to consume more and work less? The reason is that the risk-free interest rate it
declines, making current consumption relatively costly. It is also in the savers’ interest to
reduce working hours: higher consumption reduces the marginal utility of consumption, and
with it the incentive to work.21

The continuous line in the last column and top row of Figure 4 shows how much the
real interest rate needs to drop for output to remain unchanged: about 6 percentage points.
The nominal interest rates that are consistent with this equilibrium, however, are negative
(middle row, first column). For a central bank that targets inflation at 2%, as we assume
here, this means that if the natural rate of interest is below -2% then the zero bound becomes
binding and the equilibrium adjustment we have just explored is not feasible.

When the ZLB is imposed (the dashed red lines of the Figure) output and inflation drop
since the central bank cannot accommodate the shock, as shown in the top row of Figure
4.22 The third chart in the middle row clarifies that the ZLB introduces an endogenous

20See e.g. Eggertsson and Mehrotra (2014), Benigno and Fornaro (2018) and Garga and Singh (2017).
The latter two papers show how hysteresis can arise due to the R&D mechanism.

21Real wages of savers increase following the shock partly offsetting the wealth effect on their labor supply.
Without the increase in real wages, labor supply would fall twice as far. However, the labor responses of the
savers and the borrowers are not central to the dynamics of the model. Wage rigidity, for example, would
greatly reduce the asymmetric labor supply response of agents. Another simple way of doing away with
the large asymmetric response of labor supply of the two agents is to use GHH preferences. We omit this
extension because it does not nest the NK benchmark model.

22In Figure 4, and in what follows, the inflation-targeting policy considering the ZLB is defined as πt = π
whenever it > 0, otherwise it = 0.
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Figure 5: Comparison between the responses to a deleveraging shock in the deleveraging model, under
inflation targeting without and with the ZLB (lines “IT in benchmark without ZLB” and “IT in benchmark
imposing ZLB”), with those of the benchmark New-Keynesian model, under inflation targeting without and
with the ZLB (lines “IT in NK without ZLB” and “IT in NK imposing ZLB”). (The lines “IT in benchmark
without ZLB” and “IT in NK without ZLB” coincide by construction). Variables are: output (Y ), inflation
rate (π), nominal interest rate on savings (i), natural rate of interest defined as in (32) (rn). Y is in percentage
deviation with respect to the steady state; π, i and rn are in percent and at annual rates.

component to the dynamic deleveraging. As the ZLB is now binding, this reduces output
and thus borrowers’ income. This in turn implies a slowdown in deleveraging. A simple
way of seeing this is to compute the natural rate of interest given by (32). This process
is now endogenous and, as we can see in the third column of the top row recovers more
slowly with a binding ZLB (red dashed line) than otherwise. This means that endogenous
deleveraging lengthens the recession by creating a vicious circle of falling income and a slower
deleveraging, which is not found when the shocks are purely exogenous. This has important
policy implications, as we shall soon see.

Direct comparison of this model with the standard NK model helps to highlight the role
of debt deleveraging. Consider the solution without imposing the ZLB (Figure 4), where
both inflation and output are perfectly stabilized via interest rate cuts. Equations (31) and
(32) show that when inflation and output are stabilized, the real interest rate is equal to
the natural rate. In this case, the model behaves exactly like the standard New Keynesian
model, in which the real interest rate in equation (31) is now exogenously given by say,
preference shocks, as long as we set the parameters of (31) and (32) in the same way in both
models. Taking the real interest rate as representing the natural rate in the NK model, but
keeping track of the fundamental shock in the original model, what are the implications of
imposing the ZLB in the NK model vis-à-vis the more general model? Comparing the two
outcomes we analyze how making the natural rate endogenous affects the solution. That is,
we can determine to what extent it matters that in our new model the decline in output
leads to endogenous propagation as the recession makes it harder for borrowers to pay down
their debt, thus delaying the recovery of the natural rate of interest to its steady state and
prolonging the recession.

Figure 5 shows the evolution of output, inflation and the natural and nominal interest
rates in the standard NK model compared with our dynamic deleveraging model. As the
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red and blue lines show the two solutions coincide when the ZLB is not imposed. This
is by construction, since we parameterize the NK model exactly like our benchmark model
using equation (31). What is interesting is how the solutions differ when the ZLB is imposed,
(purple and yellow lines). We can see that with endogenous deleveraging the effects on output
and inflation are both larger than in the standard case. The reason is that under dynamic
deleveraging the output slack drives the natural rate of interest further down and makes
it more persistent, so the ZLB becomes more binding. Since aggregate demand depends
on the current and expected future nominal interest rate as well as expected inflation and
expected output, this interrelation feeds into lower current demand, hence lower output and
inflation, and so on. We see further that this effect is quite large: the inflation and output
drops are more than twice as great without dynamic debt deleveraging. Furthermore, the
ZLB is binding for several more quarters when persistence of the natural rate of interest is
endogenous.

We conclude then that adding dynamic deleveraging can have significant effects on the
actual dynamics at the zero bound, both in terms of persistence of the recession (for a given
shock as measured by the natural rate of interest) and its severity. What are the policy
implications? We now turn to this.

4.2 Normative analysis: optimal policy under dynamic deleverag-
ing

In the previous section we have shown that dynamic deleveraging makes the natural rate
of interest endogenous, with it the duration of the ZLB. We will now show that this means
policy should be even more aggressive than is implied by the standard model. To determine
the optimal policy, consider a policymaker who maximizes social welfare23

Wt = Et

{
∞∑
t=t0

βT−t
[
(1− χ̃) (U(Cs

t )− V (Lst)) + χ̃
(
U(Cb

t )− V (Lbt)
)]}

(33)

for weight χ̃ ∈ (0, 1). The heterogeneity in the model gives rise to special considerations.
Deleveraging shifts the economy’s distribution of wealth. Our strategy is to approximate
the model to the efficient steady state under the assumption that this will be reached in
the long run, once deleveraging is completed. The long-run steady state is efficient provided
that weights χ̃ are defined by the first-order conditions for the maximization (33) subject to

Yt = (Lst)
1−χ(Lbt)

χ = (1− χ)Cs
t + χCb

t , (34)

which imply
Uc(C

s
t )

Uc(Cb
t )

=
χ̃

(1− χ̃)

(1− χ)

χ
. (35)

Using (35) and the steady-state levels of borrowers’ and savers’ consumption reached at the
end of the deleveraging period (see (C.10) and (C.11) in Appendix C) gives a unique value
for χ̃.24

23As we noted in the context of the motivating example the assumption βs− > βb is helpful here.
24If we choose an alternative weight χ̃, the final steady state will be inefficient creating an incentive for

policy to deviate from the inflation target Π in order to correct for the inefficient final distribution of wealth.
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Figure 6: Responses following a deleveraging shock under optimal monetary policy with commitment (line
“Optimal Policy”) compared with inflation-targeting policy (line “IT”) taking into consideration the ZLB.
Variables are: output (Y ), inflation rate (π), natural rate of interest defined as in (32) (rn), nominal interest
rate on borrowing (ib), nominal interest rate on saving (i), aggregate debt over GDP (bgdp), consumption of
borrowers (Cb), and consumption of savers (Cs). Y, Cb and Cs are in percentage deviation with respect to
the steady state; π, rn, bgdp, ib and i are in percent and at annual rates.

As is shown in detail in Appendix F, a second-order approximation of (33) yields

Lt0 =
1

2
Et

{
∞∑
t=t0

βt−t0
[
Ŷ 2
t + χ(1− χ)λc(Ĉ

b
t − Ĉs

t − cR)2 + λπ(πt − π)2
]}

(36)

where C̃j
t ≡ (Cj

t − C̄j)/Y ; C̄j is the efficient steady-state level and cR ≡ [(Cb − C̄b)− (Cs −
C̄s)]/Y .25

As is shown in (36), the policymaker would like to keep inflation and output on target and
achieve the efficient levels of consumption for the two agents. But, these three objectives can
be reached simultaneously only in the long run. As Section 4.1 shows a deleveraging shock
under an inflation-targeting policy produces short-run divergences between borrowers’ and
savers’ consumption, which generate welfare losses according to objective (36), even without
taking into account the ZLB. Adding the latter makes things worse, as output and inflation
drop.

The presence of this “long-run” incentive is not convenient since it blurs understanding of the optimal
adjustment following a deleveraging shock. Moreover, to deal with a distorted steady state, we have to
adopt a more complex approximation procedure through second-order approximations of the equilibrium
conditions implied by the optimization problem of private agents and by the resource constraints. This
procedure has the cost of a more untidy analysis without the benefit of any substantial additional insight.

25A similar result is derived in Nisticó (2016), in which the consumption dispersion across agents is further
related to financial wealth.
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Figure 7: Comparison between the responses to a deleveraging shock. “Optimal Policy”: optimal policy
under commitment in the deleveraging model. “Optimal Policy λc = 0”: optimal policy under commitment
in the deleveraging model when λc = 0 in (36). “Optimal Policy in NK”: optimal policy in the standard
NK model. Variables are: output (Y ), inflation rate (π), nominal interest rate on savings (i), natural rate
of interest defined as in (32) (rn). Y is in percentage deviation with respect to the steady state; π, i and rn

are in percent and at annual rates.

The benevolent planner minimizes the loss function (36) under commitment by choosing

the sequence
{
πt, Ĉ

b
t , Ĉ

s
t , Ŷt, ı̂

b
t , ı̂t, b̂t

}∞
t=t0

given the constraints (25), (26), (27), (28), (29),

(30), the exogenous process d̂t and an initial condition on b̂t0−1 and taking into account the
ZLB constraint. For the details of the first-order conditions of the optimal policy problem
see Appendix G.

The charts in Figures 6 show the responses of some key variables to a permanent shock to
d̂t under both optimal policy and inflation targeting considering the zero bound on nominal
interest rates. Optimal policy has important elements in common with the standard NK
model (see e.g. Eggertsson and Woodford, 2003). Figure 6 shows that optimal policy
commits to keeping the nominal interest rates low for a considerably longer time than if the
central bank targets inflation. The result of this commitment is an output boom and inflation
higher-than-target during and after the trap. A key difference is that this commitment is
stronger than in the standard model, because it implies an accommodation that is forceful
enough for inflation to overshoot the 2% target for the entire duration of the ZLB whereas
it never undershoots. This feature of optimal policy is new and different relative to the
standard model.

Figure 7 shows the comparison with the case in which λc = 0. Including the consumption-
risk-sharing argument in the loss function is the cause of the initial overshooting of inflation.
At the exit from the liquidity trap, inflation and output undershoot their targets when
λc > 0 relative to the case λc = 0. Taking the distributional impact of policy into account in a
heterogeneous-agent model requires a more expansionary reaction to deleveraging, increasing
output and mitigating the cost of deleveraging to borrowers.

An important conclusion then is that factoring in heterogeneity between borrowers and
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savers has important implications for optimal policy due to its welfare effects. Inflation
policy becomes more attractive than in the standard model, because borrowers suffer more
than savers in a debt deleveraging cycle so their marginal utility is greater, and because the
benevolent planner cares about the distribution of the cost of the recession across agents.
The utility of borrowers, in turn, improves with higher inflation than in the standard model.
Even if it comes at the expense of savers, a policymaker maximizing welfare of form (36)
will set a higher inflation target. The labor market is perfectly flexible, so that one way in
which the borrower can react to the shock is by increasing labor supply. With more realistic
frictions, the ability to deleverage by increasing labor supply decreases significantly making
the case for inflation even stronger.

One interesting implication of our results is a theoretical rationale for inflation policy
based on special consideration for borrowers, beyond the traditional case made in the modern
ZLB literature. The improved welfare of borrowers as a consequence of inflation was a key
explanation for the inflationary policy pursued by the US government during the Great
Depression in 1933 (see e.g. Eggertsson, 2008).

At the end of Subsection 4.1 (see Figure 5), we compared the solution of our model to the
NK model with parameters set for the two to yield identical outcomes for output, interest
rates and inflation under an inflation targeting regime, as long as the ZLB is not imposed.
We now analyze how optimal monetary policy differs across the two models when the ZLB
is binding.

A first important difference is that the loss function in the benchmark NK model corre-
sponds to (36) but with λc = 0. Second, in our setting – unlike the standard model – policy
takes account of the fact it endogenously affects the deleveraging process (and the natural
rate of interest). Figure 7 shows that the output and inflation implications of the two op-
timal policies are quite different. In our dynamic deleveraging model, optimal policy (line
“Optimal Policy”) is aggressive enough to bring about an immediate rise in inflation, thus
overshooting the implicit inflation target by a significant amount. In the benchmark NK
model (line “Optimal Policy in NK”), inflation overshoots the target less aggressively and
with some delay, and recovery peaks later. The most interesting feature in the comparison
is the behavior of the nominal interest rate. Optimal policy in our model implies an earlier
lift-off than in the standard model, even though it is consistent with a smaller decline in
output and inflation. How is it possible, then, that there is more expansion in output and
inflation under our model than in the benchmark NK? This is the effect of making the natural
rate endogenous. In the deleveraging model, the zero bound policy speeds up deleveraging
and mitigates the fall in the natural rate of interest (as shown in the right-bottom panel)
resulting in a more expansionary policy in terms of output and inflation. In the NK model
no such feedback effect between policy and the natural rate is present.

The difference in optimal policy is partly explained by the endogenous feedback between
policy and the natural rate of interest under debt deleveraging, and partly by the different
objective functions of the government in the two models. Figure 7 shows the implications of
optimal policy assuming λc = 0 in (36) (in which case the policymaker does not care about
the distribution of income across the two agents). Optimal policy now yields dynamics more
similar to the standard NK model, but three important differences remain. First, both
inflation and output overshoot their long-term target earlier than in the standard case (and
before the ZLB ceases to bind). Second, optimal policy raises the natural rate of interest
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above the level we feed exogenously into the NK model. Third, and relatedly, optimal policy
now prescribes a substantially shorter duration of the zero interest rate than in the NK model
while achieving a similar pattern of inflation and output. The reason for this last point is not
that the policy is less aggressive. Rather, it is again because it is successful in endogenously
raising the natural rate of interest and generating an output boom and inflation that the
liftoff of rates comes earlier than in the absence of the policy easing.

Appendix G.1 explores some robustness analysis, analyzing the consequences of different
degrees of nominal rigidity and of an alternative spread function with a debt-over-gdp ar-
gument in lieu of real debt. In the first extension, the greater the price flexibility, the less
monetary policy needs to stay at the ZLB. By contrast, the different argument of the spread
function does not make much quantitative difference.

5 Conclusions and future work

Explicitly deriving how the optimal monetary policy can be implemented, is beyond the
scope of this paper. Here let us set forth few observations by way of conclusion.

One issue for policy implementation is that where a rich stochastic structure underlies
the model, it could be difficult to communicate it in terms of state-contingent paths for
the interest rate. One solution, suggested by Eggertsson and Woodford (2003), is a simple
price-level targeting criterion; that is the central bank keeps the nominal interest rate at
zero until it reaches a certain target that is the combination of price and output levels. If
the target is not reached due to the ZLB, a formula is provided for how the target should
be revised upward. Critically, however, the formula for the targeting criterion depends only
on past deviations of policy from the suggested target.

The reason why the Eggertsson and Woodford (2003)’s targeting criterion depends only
on lagged variables, however, is that the model is strictly forward-looking, for the reasons set
out in Giannoni and Woodford (2017). In our setting, however, debt is a state variable. As
Giannoni and Woodford (2017) show, this implies that the targeting criterion will include
terms that are forward-looking. In the present context, this implies that the central bank’s
commitment to zero interest rate should depend not only on the realization of the current
economic variables but also on forecasts which in turn depend on the economy’s debt capacity
and the speed of deleveraging. The problem of implementation is thus a rich and interesting
avenue for further research.

In this paper we have extended the standard New Keynesian model include dynamic
deleveraging. This yields a relatively general framework that we expect to be useful for
further applications. We have kept the analysis as simple as possible to provide a workhorse
post-crisis model.

We have focused chiefly on deleveraging shocks to households, but we have also remarked
on the isomorphism with credit shocks that capture changes in intermediaries’ leverage or
other financial constraints. The analysis can be extended to study other sources of distur-
bances such as the more standard productivity and cost-push shocks. The way profits and
taxes are distributed across agents significantly affects the response to shocks and accord-
ingly warrants more investigation, as has been pointed out by the most recent literature on
heterogenous-agent models.
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One important extension would be to enlarge our framework into medium-scale DSGE
model that can be estimated. Here we have elected not to do so in order to get a tractable
model offering analytic predictions about optimal policy and clearly generalizing the existing
literature on the zero lower bound. We hope future research can take this analysis a step
further to produce a fully estimated model, possibly along the lines pursued by Justiniano
et al. (2014).

Finally, one can imagine applications of the approach developed here to open economies
or currency areas, so as to study the endogeneity of a country’s deleveraging embedded in an
international transmission mechanism. Benigno and Romei (2014), Bhattarai et al. (2015)
and Fornaro (2014) are examples of such work. In particular, Fornaro (2014) analyzes a
currency-area model that has some similarities with the framework set out here, with the
demonstration that if it relinquishes control over the exchange rate, a country may suffer a
severe contraction and a prolonged stay at the zero lower bound.
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A Banking and deleveraging

This Appendix provides a microfounded structure for borrowing and lending, with explicit
banking technology, to help the reader interpret the general function presented in Section
2.2.

Broadly, we think of the spread function as stemming from two main sources. One is the
existence of a certain level of debt that is “safe”, i.e. above which lending to a particular
group of individuals is at risk of default. The other is the cost of capital faced by the financial
system as a whole. As we shall see, we do not need to take a position on which of these
factors is the ultimate source. Let us start with the first interpretation.

A bank can be seen as a technology that converts the deposit contracts of some people
into loan contracts of others. We posit that only banks can produce loan contracts (i.e.
households cannot lend directly to one another). Consider the profits of a bank issuing
loans to a group of individuals j (it can be a continuum of measure 1), financed via deposits
by individual(s) i (the identity of the depositors is not important, they could be many
or just one, for we assume all depositors receive the same risk-free deposit rate which is
determined in equilibrium). Suppose that within the group of loans j, there is a probability
γt(lt(j), b̄

j
t , b

b
t) of any given loan not being repaid, so that in aggregate γt(lt(j), b̄

j
t , b

b
t)lt(j)

equals the resources lost by the bank on its lending. This extra cost can already be predicted
at time t. Intermediaries are unable to distinguish ex ante which type j borrowers will default.
Assume now that this probability is higher, the further the loan is from what the bank deems
“safe”, i.e. b̄jt . Similarly, the greater the aggregate debt in the economy bbt , the higher the
probability of default. The terms of both loan and deposit contracts are determined in period
t to be paid out in period t+ 1. At the end of period t some people abscond with the money,
in a way we will specify below. In period t+1 the remaining loans are collected and deposits
paid.

The profit of a bank offering loan contracts of type j and taking deposits i is

dt(i)− lt(j)− γt(lt(j), b̄jt , bbt)lt(j) + EtRt,t+1{(1 + rbt )lt(j)− (1 + rdt )dt(i)} (A.1)

where Rt,t+1 is a stochastic discount factor used to price the real value of next-period income
flows.

The problem of the bank can be greatly simplified by the following assumption: Suppose
that if there are profits on the loan contracts, the bank pays them to its owner (the rep-
resentative saver) in period t and holds only enough assets at the end-of-period to pay off
the depositors in period t+ 1. This implies that (1 + rbt )lt(j) = (1 + rdt )dt(i) so that the last
term of the profit function drops out. Furthermore, using this to substitute for dt(i), we can
simplify (A.1) to {

rbt − rdt
1 + rdt

}
lt(j)− γt(lt(j), b̄jt , bbt)lt(j)

in which case the bank’s problem is simply to determine how much to lend to borrowers j
(funded by taking deposits at the rate rdt ). This yields the first order condition

rbt − rdt
1 + rdt

= γ1
t (A.2)
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where γ1
t ≡

∂γt(lt(j),b̄
j
t ,b

b
t)

∂lt(j)
lt(j) + γt(lt(j), b̄

j
t , b

b
t). This problem looks exactly the same as in the

previous section if we make one additional assumption: namely that “Fraud opportunities,”
and hence default, arrive exogenously to savers when they can “pose” as borrowers. In this
case the proceeds of the fraud show up in the exogenous lump sum term in equation (1),
while the borrowers’ budget constraint remains unchanged. A “Minsky moment” can then
be defined as a sudden reduction in b̄jt , which is the perceived borrowing capacity of the
group of borrowers of type j, which is also the borrowing capacity of the economy as a whole
and shows up exactly in the same fashion as we have already analyzed.26

Consider now an alternative environment in which the spread reflects instead some cost
of funding to banks. This was our second interpretation of the shock triggering the crisis.
One example of such a cost is a capital requirement: that is, the bank needs to hold a certain
capital, kst , as a fraction ζ of its outstanding borrowing, bbt , i.e.

kst ≥ ζ
bbt

1 + rbt

in which ζ is the inverse of the leverage ratio. The bank raises this capital from savers, so we
need to adjust the saver’s budget constraint to reflect this while the borrower’s constraint
remains unchanged.27 Suppose lending some capital to the bank is completely risk-free for
savers, so that rkt = rst . In writing the bank’s problem, let us now imagine, as in Jermann
and Quadrini (2012) or Justiniano et al (2014), that there is some cost of equity funding to
the bank beyond rkt . In particular, assume a function f(·) that is weakly convex and captures
the cost of equity funding above a certain threshold k̄, with the property that f(1) = 0. The
profit of the bank can now be written as

Ψt+1 = (1 + rbt )b̃
b
t + (1 + rst )b̃

s
t − (1 + rst )k

s
t

[
1 +

1

ζ
f

(
(1 + rst )k

s
t

k̄

)]
, (A.3)

where we have appropriately re-scaled the function f(·) by ζ and defined b̃bt ≡ bbt/(1+rbt ) and
b̃st ≡ bst/(1 + rst ). Considering that the capital-requirement constraint binds in equilibrium
and that b̃bt + b̃st = kst , it is easy to show that the first-order condition of the optimization
problem implies

(1 + rbt ) = (1 + rst )

[
1 + F

(
(1 + rst )k

s
t

k̄

)]
,

in which

F

(
(1 + rt)k

s
t

k̄

)
≡ f

(
(1 + rst )k

s
t

k̄

)
+

(1 + rst )k
s
t

k̄
f ′
(

(1 + rst )k
s
t

k̄

)
.

Using again the fact that the capital requirement binds in equilibrium (1 + rst )k
s
t = ζbbt , we

can further write the above first-order condition as

(1 + rbt ) = (1 + rst )

[
1 + F

(
ζbbt
k̄

)]
.

26The first-order condition (A.2) is in fact equivalent to the type of friction we assumed in equation (2).
To see this, rewrite (A.2) as 1 + rbt = (1 + rdt )(1 + γ1

t ) which reduces to (5) if we assume that γt = bbt − b̄t.
27In particular the saver’s budget constraint (1) should be written as bst/(1 + rst ) − kst = bst−1 − (1 +

rkt−1)kst−1 + Cst − (1/2)Y + T st .
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This, once again, gives a spread between the lending and the deposit rate that is a function
of the aggregate debt in the economy, as in (2). Here, however, it is due to capital constraints
of the banks. In particular we can see that this spread may increase either because of an
abrupt change in the required leverage ratio of the banks (an increase in ζ), or because
of an increase in the cost of the bank’s equity funding (a fall in k̄). Any of the foregoing
interpretations is valid for the general spread function that we choose in the general model
of Section 2.2.

B Recursive formulation of the AS equation

Here, we describe the recursive formulation of the AS equation. This is given by(
1− α

(
Πt
Π

)θ−1

1− α

) 1
θ−1

=
Ft
Kt

, (B.4)

where Ft and Kt satisfy:

Ft = λtYt + αβEt

{
Ft+1

(
Πt+1

Π

)θ−1
}
, (B.5)

Kt = µ
λt∆

η
tY

1+η
t

z exp(−z(Yt − Ξt))
+ αβEt

{
Kt+1

(
Πt+1

Π

)θ}
. (B.6)

C Steady State

The steady state implied by the equilibrium conditions is of particular importance, since we
are taking log-linear approximations of the model. We consider an initial steady state in
which b̄t = b̄high, ζt = ζ and monetary policy sets the inflation rate to the target Πt = Π. It
clearly follows from (21) that ∆t = 1. In this steady state, the Euler equations of the savers,
(11), and borrowers, (13), imply, respectively, that

(1 + i) = β−1Π, (C.7)

and

(1 + ib) = β−1Π

(
1− ε

(
b

b̄high
,
b

b̄high
, ζ

))
(C.8)

while the borrowing premium is given by

(1 + ib)

(1 + i)
= φ

(
b

b̄high
,
b

b̄high
, ζ

)
, (C.9)

following equation (14).
Combining (C.7), (C.8) and (C.9) we get
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φ
(

b
b̄high

, b
b̄high

, ζ
)

1− ε
(

b
b̄high

, b
b̄high

, ζ
) = 1

which implicitly defines the level of debt b for each borrower with respect to the risk-free
threshold b̄high. In particular, under minor restrictions on the functions φ(·) and ε(·), b can
be set equal to b̄high implying that φ(·) = 1 so that the borrowing and saving rates are equal
in the steady state, ib = i, while ε(·) = 0, implying that φbj(1, 1, ζ) = 0.

Having determined the steady-state level of debt, we obtain the consumption of each
borrower from (24)

Cb = Y − (1− β)

Π
b̄high,

under the assumption that $ = χ, while from the aggregate resource constraint (17), we
obtain the consumption of savers

Cs = Y +
(1− β)

Π

χ

1− χ
b̄high.

Given the policy rule Πt = Π, the aggregate-supply block of the model, characterized by
equations (B.4)–(B.6), implies that steady-state output is determined by

Y η

z exp(−zY )
= 1,

where we have also assumed a subsidy on firms’ revenues equal to τ = 1/(θ − 1) such that
µ = 1.

An important implication of our preference specification is that steady-state output is
independent of the distribution of wealth, and therefore of the debt deleveraging process. In
particular, we are interested in studying the effects of a permanent reduction in b̄ from b̄high

to b̄low. Following this shock, the consumption of savers and of borrowers converges to new
levels defined by

C̄b = Y − (1− β)

Π
b̄low, (C.10)

C̄s = Y +
(1− β)

Π

χ

1− χ
b̄low. (C.11)

D Derivation of the log-linearized Euler equation and

spread function when βs > βb

This section derives the log-linearized Euler equation for borrowers and the spread function
when savers are more patient than borrowers, i.e. when βs > βb. First we focus on the Euler
equation and then we analyze the spread function.

For clarity we rewrite equation (13):

Uc(C
b
t ) = βb

(1 + ibt)

1− ε
(
bt
b̄t
, bt
b̄t
, ζt

)Et{Uc(Cb
t+1)

Pt
Pt+1

}
, (D.12)
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where the elasticity of the premium with respect to the individual real debt is defined as

ε

(
bt
b̄t
,
bt
b̄t
, ζt

)
≡ bt
b̄t

φbj
(
bt
b̄t
, bt
b̄t
, ζt

)
φ
(
bt
b̄t
, bt
b̄t
, ζt

) .

Before log-linearizing the Euler equation (D.12) we must define some coefficients:

ν ≡ Y

b̄

1

φ
(
b∗

b̄
, b

∗

b̄
, ζ
) 1(

1− ε
(
b∗

b̄
, b

∗

b̄
, ζ
)) (φbj (b∗

b̄
,
b∗

b̄
, ζ

)
+
b∗

b̄

(
φbj ,bj

(
b∗

b̄
,
b∗

b̄
, ζ

)
+ φbj ,b

(
b∗

b̄
,
b∗

b̄
, ζ

))
− b∗

b̄

φbj
(
b∗

b̄
, b

∗

b̄
, ζ
)

φ
(
b∗

b̄
, b

∗

b̄
, ζ
) (φb(b∗

b̄
,
b∗

b̄
, ζ

)
+ φbj

(
b∗

b̄
,
b∗

b̄
, ζ

)))
,

and

νζ ≡
b∗

b̄

ζ

φ
(
b∗

b̄
, b

∗

b̄
, ζ
) 1(

1− ε
(
b∗

b̄
, b

∗

b̄
, ζ
)) (φbj ,ζ (b∗

b̄
,
b∗

b̄
, ζ

)
−
φbj
(
b∗

b̄
, b

∗

b̄
, ζ
)
φζ
(
b∗

b̄
, b

∗

b̄
, ζ
)

φ
(
b∗

b̄
, b

∗

b̄
, ζ
) )

,

where we define b∗ as the individual borrower’s steady-state debt and φb(., ., .) and φζ(., ., .)
as the derivatives of the function φ(., ., .) with respect to the second and the third argument,
respectively. Finally, we define φbj ,bj(., ., .) as the second derivative with respect to the first
argument and φbj ,b(., ., .) and φbj ,ζ(., ., .) as the cross derivatives with respect to the first and
the second arguments and to the first and third arguments, respectively. In addition, we
assume that

φbj

(
b∗

b̄
,
b∗

b̄
, ζ

)
+
b∗

b̄

(
φbj ,bj

(
b∗

b̄
,
b∗

b̄
, ζ

)
+ φbj ,b

(
b∗

b̄
,
b∗

b̄
, ζ

))
≥

b∗

b̄

φbj
(
b∗

b̄
, b

∗

b̄
, ζ
)

φ
(
b∗

b̄
, b

∗

b̄
, ζ
) (φb(b∗

b̄
,
b∗

b̄
, ζ

)
+ φbj

(
b∗

b̄
,
b∗

b̄
, ζ

))
,

and

φbj ,ζ

(
b∗

b̄
,
b∗

b̄
, ζ

)
≤
φbj
(
b∗

b̄
, b

∗

b̄
, ζ
)
φζ
(
b∗

b̄
, b

∗

b̄
, ζ
)

φ
(
b∗

b̄
, b

∗

b̄
, ζ
) .

Therefore, we log-linearize the borrowers Euler equation (D.12) around the steady-state
allocation obtaining:

EtĈ
b
t+1 − Ĉb

t = σ
[
ı̂bt + υ

(
b̂t − d̂1,t

)
− Et(πt+1 − π)

]
, (D.13)

where d̂1,t ≡
(
b̄t − b̄high

)
/Y − νζ

ν
(ζt−ζ)/Y .28 Equation (D.13) is almost identical to equation

(26) except for the definition of the shock d̂1,t in place of d̂t.

28The other variables correspond to those defined in Section 2.3.
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Second, we consider equation (14):

(1 + ibt) = (1 + it) · φ
(
bt
b̄t
,
bt
b̄t
, ζt

)
. (D.14)

We define

ϕ ≡ Y

b̄

1

φ
(
b∗

b̄
, b

∗

b̄
, ζ
) (φbj (b∗

b̄
,
b∗

b̄
, ζ

)
+ φb

(
b∗

b̄
,
b∗

b̄
, ζ

))
ϕζ ≡

ζ

b̄

φζ
(
b∗

b̄
, b

∗

b̄
, ζ
)

φ
(
b∗

b̄
, b

∗

b̄
, ζ
) ,

and assume that φbj(., ., .) ≥ 0, φb(., ., .) ≥ 0 and φζ(., ., .) ≤ 0 in line with Section 2.2. Thus,
we log-linearize equation (D.14) around the steady state, obtaining:

ı̂bt = ı̂t + ϕ(b̂t − d̂2,t), (D.15)

where d̂2,t ≡
(
b̄t − b̄high

)
/Y − ϕζ

ϕ
(ζt − ζ)/Y . Again, equation (D.15) is almost identical to

(27), except for the definition of the shock, d̂2,t. In addition, the shock to the Euler equation

of the borrowers d̂1,t may differ from the shock in the spread function d̂2,t.

E Calibration

To calibrate the shock, we rely on our interpretation of the model as driven by debt delever-
aging on the household side. A possible alternative, however, would be some measure of
disturbances in the banking system.

First, as an empirical proxy for household debt, we use the series of U.S. nominal debt for
Households and Nonprofit Organizations taken from the Board of Governors of the Federal
Reserve System.29 This series is shown in Figure 8.30 Second, we use the Commercial Bank
Credit Card Interest Rate as a proxy for the borrowers’ interest rate.31 We show this series,
appropriately adjusted, on the top row and second column of Figure 3.32

The model and the data are quarterly. The calibrated parameters, shown in Table 1, are
largely standard and taken directly from the literature cited in the Table.33 Particular to
our model are the parameters ϕ and υ which govern the spread function. The main new
element of the calibration is the choice of shock, which is a one-time reduction in d from dhigh

to dlow, with its implications for the new observables we have introduced. We use the data
on debt to discipline the choice of dhigh to dlow. We set dhigh = 4.0869 to match the value

29Following Eggertsson, Ferrero and Raffo (2014), we approximate GDP as the sum of Consumption and
Gross Investment from the NIPA tables.

30The series shows different trends over time, possibly as a result of some structural break.
31The source of the Commercial Bank Credit Card Interest Rate is the Board of Governors of the Federal

Reserve System.
32We took the series from the Account Interest Assessed. This measure of spread was fluctuating around

10%. Since in our model the steady-state spread is zero, we de-meaned the data spread using the historical
mean from 1995 to the first quarter of 2009. To compute the borrowers’ interest rate we add this de-meaned
spread to the Federal Funds rate.

33Except for the fraction of borrowing and lending, where we rely on Justiniano, Primiceri and Tambalotti
(2015).
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Figure 8: US Private Debt over GDP in percent, with dashed trend lines for different subperiods.

of the debt to GDP ratio in the second quarter of 2008.34 We set dlow = 3.3384 so that the
final debt matches the debt to GDP ratio of 88%, observed in third quarter of 2015. This
is also an interesting benchmark for a reason shown in Figure 8, which draws a trend line
for the increase in the debt/output ratio for the period 1987-2000. The year 2001 marks the
break point at which we see a very rapid increase in debt, a period many have associated
with the real estate “bubble”. The value 88% corresponds, as seen in the figure, to the 2015
value of this trend projected on 1987-2000 data which happens to coincide exactly with the
observed value of real debt over GDP in that year.35 While this is only one illustrative case,
we experiment with other values as further discussed below. The two key parameters left
to be determined are ϕ and υ. These parameters capture the characteristics of function
(10), which determines the difference between borrowing and lending rates and the extent
to which households internalize this in their optimizing decisions (which in turn determine
the speed of debt deleveraging). Our strategy is to set these two parameters to match the

34Debt over GDP was equal to 107.73%
35We consider private debt over GDP at quarterly frequency from the first quarter of 1952 to the third

quarter of 2015. We divide this series into four subsamples: Q1-1952–Q2-1964, Q3-1964–Q2-1984, Q3-
1984–Q4-1986 and Q1-1987–Q4-2000. We choose these subsamples since they have different linear trends.
Excluding the third subsample, we compute the linear trend of all the subsamples. We consider the third
subsample as a discontinuity jump. Finally, we project the linear trend of the fourth subsample up to the
third quarter of 2015.
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data on the top row of Figure 3 as closely as possible using as a criterion Minimum Mean
Square Error of the data relative to the model. This procedure results in ϕ = .0078 and
υ = .0225.36

By construction, the model matches the data in Figure 3 relatively well, as we have
chosen ϕ and υ to do precisely that. Let us now see what happens to the variables that
we have not tried explicitly to match, feeding the shock into the model, i.e. dhigh falls
to dlow. Figure 3 shows the model and the data. As our empirical measures we take the
annual percentage change in CPI for inflation and detrended GDP, through HP filter, for the
deviation of output from potential. The short-term nominal interest rate – i.e. the risk-free
rate paid by the saver – is the Federal Funds rate. The duration of the output contraction
is about three years about the same as for our measure of the output gap according to the
HP filter, which shows output back up to a trend around 2012.37 As noted in the main text,
the key discrepancy between the model and the data is the Federal Funds rate. We have
also experimented with lenghtening the recession by choosing a lower dlow. Another natural
benchmark, relative to the one we choose, is the household debt over GDP in 2001, or 76.5%.
Accordingly, we have re-estimated the values of υ and ϕ. This adjustment does increase the
duration of the ZLB by about three quarters. While the changes in output and inflation are
of similar order, this parametrization is a bit worse at matching the spreads and the debt
deleveraging, which is why we focus on the numerical example considered in the text.

F Derivation of the loss function (36)

In this section we show the derivations of the second-order approximation of the welfare func-
tion (33). The approximation is with respect to an efficient steady state, which maximizes
(33) under the resource constraint (34).

At the efficient steady state, the following conditions hold

(1− χ̃)Ū s
c = (1− χ)λ̄;

χ̃Ū b
c = χλ̄;

(1− χ̃)V̄ s
l = (1− χ)λ̄

Ȳ

L̄s
;

χ̃V̄ b
l = χλ̄

Ȳ

L̄b

where all upper bars denote steady-state values and λ̄ is the steady-state value of the
Lagrange multiplier associated with constraint (34). Note that these conditions imply

36We create a grid of ϕ and υ. For every couple we simulate our model, assuming that the central bank
targets inflation and that the nominal interest rate cannot go below zero. We compute the square difference
of the deleveraging in our model and in the actual data as well as the square difference of the borrowers’
interest rate in the data and in our model. We pick the couple that minimizes the sum of these square
differences, that is φ = .0078 and υ = .0225.

37To be clear, we do not think this is the most reasonable estimate of the output gap, but we use it here
since it is very transparent and widely used, and thus helpful for illustrative purposes. We took the series
of GDP as previously defined from 1990 till the last data available, divided by the CPI and de-trended by
using the HP filter. Since this series is at quarterly frequency, we set the multiplier λHP equal to 1600.
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Ū s
c /Ū

b
c = (1 − χ)χ̃/[χ(1 − χ̃)] so that an appropriately chosen χ̃ determines the efficient

distribution of wealth.
By taking a second-order expansion of the utility flow around the efficient steady state,

we obtain

Ut = Ū + (1− χ̃)

[
Ū s
c (Cs

t − C̄s) +
1

2
Ū s
cc(C

s
t − C̄s)2

]
+

+χ̃

[
Ū b
c (C

b
t − C̄b) +

1

2
Ū b
cc(C

b
t − C̄b)2

]
+

−(1− χ̃)

[
V̄ s
l (Lst − L̄s) +

1

2
V̄ s
ll (L

s
t − L̄s)2

]
−

−χ̃
[
V̄ b
l (Lbt − L̄b) +

1

2
V̄ b
ll (L

b
t − L̄b)2

]
+O(||ξ||3)

where the upper-bar variable denotes the efficient steady-state variable and O(||ξ||3) collects
terms in the expansion that are of an order higher than the second. We can use the steady-
state conditions to write the above equation as

Ut = Ū + (1− χ)λ̄

[
(Cs

t − C̄s) +
1

2

Ū s
cc

Ū s
c

(Cs
t − C̄s)2

]
+

+χλ̄

[
(Cb

t − C̄b) +
1

2

Ū b
cc

Ū b
c

(Cb
t − C̄b)2

]
+

−(1− χ)λ̄
Ȳ

L̄s

[
(Lst − L̄s) +

1

2

V̄ s
ll

V̄ s
l

(Lst − L̄s)2

]
−

−χλ̄ Ȳ
L̄b

[
(Lbt − L̄b) +

1

2

V̄ b
ll

V̄ b
l

(Lbt − L̄b)2

]
+O(||ξ||3).

Note that for a generic variable X, we have

Xt = X̄

(
1 + X̃t +

1

2
X̃2
t

)
+O(||ξ||3)

where X̃t ≡ lnXt/X̄, and further recall that

Yt = χCs
t + (1− χ)Cb

t .

We can write the above approximation as

Ut = Ū + λ̄Ȳ

[
Ỹt +

1

2
Ỹ 2
t

]
− 1

2
λ̄z
[
(1− χ)(Cs

t − C̄s)2 + χ(Cb
t − C̄b)2

]
+

−χλ̄Ȳ
[
L̃st +

1

2
(1 + η)(L̃st)

2

]
−(1− χ)λ̄Ȳ

[
L̃bt +

1

2
(1 + η)(L̃bt)

2

]
+O(||ξ||3), (F.16)
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where we have also used the fact that with the preference specification used Ū s
cc/Ū

s
c =

Ū b
cc/Ū

b
c = −z and V̄ s

ll L̄
s/V̄ s

l = V̄ b
ll L̄

b/V̄ b
l = η. Note that the efficient steady state of output

is equal also to its initial steady state. Therefore, in what follows we can use the fact that
Ȳ = Y and also clearly Ỹt = Ŷt.

Notice the following equivalences

(Lst)
1+η

z exp(−zCs
t )

=
(Lbt)

1+η

z exp(−zCb
t )

=
(∆tYt)

1+η

z exp(−zYt)

where we have used WtLt = W s
t L

s
t = W b

t L
b
t and Lt = ∆tYt. The above equations imply

exactly that

L̃st = ∆̃t + Ŷt −
z

1 + η
[(Cs

t − C̄s)− (Yt − Y )],

L̃bt = ∆̃t + Ŷt −
z

1 + η
[(Cb

t − C̄b)− (Yt − Y )].

and therefore that

L̃st = ∆̃t + Ŷt −
σ−1

1 + η
(C̃s

t − Ŷt),

L̃bt = ∆̃t + Ŷt −
σ−1

1 + η
(C̃b

t − Ŷt).

where C̃b
t ≡ (Cb

t − C̄b)/Y and C̃s
t ≡ (Cs

t − C̄s)/Y . Moreover,

C̃s
t − Ŷt = −χ(C̃b

t − C̃s
t )

C̃b
t − Ŷt = (1− χ)(C̃b

t − C̃s
t )

which can be substituted into (F.16) to obtain

Ut = Ū − 1

2
λ̄Y
{

(η + σ−1) · Ŷ 2
t + χ(1− χ)σ−1(C̃b

t − C̃s
t )

2 +

+χ(1− χ)
σ−2

(1 + η)
(C̃b

t − C̃s
t )

2

}
− λ̄Y · ∆̂t +O(||ξ||3).

Note that

∆t = α

(
Πt

Π

)θ
∆t−1 + (1− α)

(
1− α

(
Πt
Π

)θ−1

1− α

) θ
θ−1

.

By taking a second-order approximation of ∆̂t, as is standard in the literature, and integrat-
ing appropriately across time, we obtain that

∞∑
t=t0

βt−t0∆̂t =
α

(1− α)(1− αβ)
θ

∞∑
t=t0

βt−t0
(πt − π)2

2
+ t.i.p.+O(||ξ||3).

We can therefore write

Wt0 = −λ̄(η + σ−1)Y · 1

2
Et

{
∞∑
t=t0

βt−t0Lt

}
+ t.i.p.+O(||ξ||3)
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where
Lt = Ŷ 2

t + χ(1− χ)λc(C̃
b
t − C̃s

t )
2 + λπ(πt − π)2

where we have defined

λc ≡
σ−1(1 + η) + σ−2

(1 + η)(η + σ−1)

λπ ≡
θ

κ
.

G First-order conditions of optimal policy under com-

mitment

In this section, we characterize the optimal policy problem in detail.
Optimal monetary policy under commitment minimizes the loss function

Lt0 =
1

2
Et

{
∞∑
t=t0

βt−t0
[
Ŷ 2
t + χ(1− χ)λc(Ĉ

b
t − Ĉs

t − cR)2 + λπ(πt − π)2
]}

(G.17)

where cR captures the relative difference between the initial and the final steady-state con-
sumptions of borrowers and savers defined as cR ≡ [(Cb − C̄b) − (Cs − C̄s)]/Y. The mini-
mization is constrained by the following set of structural equations of the model:

Ŷt = χĈb
t + (1− χ)Ĉs

t (λ1) (G.18)

EtĈ
b
t+1 − Ĉb

t = σ[̂ıbt − Et(πt+1 − π) + υ(b̂t − d̂t)] (λ2) (G.19)

EtĈ
s
t+1 − Ĉs

t = σ[̂ıst − Et(πt+1 − π)] (λ3) (G.20)

Ĉb
t =

b̄

(1 + i)
(b̂t − (̂ıbt))−

b̄

β(1 + i)
(b̂t−1 − (πt − π)) + Ŷt (λ4) (G.21)

ı̂bt = ı̂st + ϕ
(
b̂t − d̂t

)
(λ5) (G.22)

πt − π = κŶt + βEt(πt+1 − π) (λ6) (G.23)

−ı̂st + ı̂ss,t ≤ 0. (λ7) (G.24)

Note that for each of these equations we have written on the right-hand side its Lagrange
multiplier.

The first-order conditions of the optimal policy problem are:

Ŷt : Ŷt + λ1,t − λ4,t − kλ6,t = 0 (G.25)

Ĉs
t : − (χ(1− χ)λc)

(
Ĉb
t − Ĉs

t − ĈR
t

)
− (1− χ)λ1,t − λ3,t +

λ3,t−1

β
(G.26)
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Ĉb
t : (χ(1− χ)λc)

(
Ĉb
t − Ĉs

t − ĈR
t

)
− (χ)λ1,t − λ2,t +

λ2,t−1

β
+ λ4,t = 0 (G.27)

π̂t : λπ(πt − π) + σ
λ2,t−1

β
+ σ

λ3,t−1

β
− b̄

(1 + i)β
λ4,t + λ6,t − λ6,t−1 = 0 (G.28)

ı̂st : −λ3,tσ − λ5,t − λ7,t = 0 (G.29)

ı̂bt : −λ2,tσ +
b̄

(1 + i)
λ4,t + λ5,t = 0 (G.30)

b̂t : − b̄

(1 + i)
λ4,t +

b̄

(1 + i)
Etλ4,t+1 − φλ5,t − συλ2,t = 0. (G.31)

λ7,t(−ı̂st + ı̂ss,t) = 0. (G.32)

The set of first-order conditions together with the equilibrium constraints is solved using
a solution method that takes into account the zero lower bound (see also Eggertsson and
Woodford, 2003).

G.1 Robustness analysis

In this section, we explore the properties of our model as regards robustness to different
assumptions. First, we analyze how optimal policy changes for different degrees of price
stickiness. Under our benchmark model, the calibration of the slope of the AS equation
is κ = 0.02. We conduct experiments with higher values of κ, implying greater degree of
price flexibility, κ = 0.1 and κ = 0.5. Figure 9 shows the comparison. The greater the price
flexibility (the higher κ), the less time monetary policy needs to stay at the zero lower bound.
Inflation surges more, even on impact, when prices are more flexible, and output stabilization
improves accordingly. Indeed, the costs of inflation variability in the loss function are smaller,
the greater the degree of price flexibility. We also investigated whether it makes a difference
to assume that the spread function in (27) is a function of debt/GDP rather than real debt.
This distinction produces only minor differences in the computation of the optimal policy.
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Figure 9: Comparison between the optimal responses to a deleveraging shock under different degrees of price
stickiness. “Benchmark”: optimal policy under commitment. “κ = 0.1”: optimal policy under commitment
when κ in equation (30) is equal to 0.1. “κ = 0.5”: optimal policy under commitment when κ in equation
(30) is equal to 0.5. Variables are: consumption of borrowers and savers, (Cb) and (Cs), output (Y ), inflation
rate (π), nominal interest rate on savings (i), and debt to steady-state GDP ratio (bgdp). Y , Cb and Cs are
in percentage deviation with respect to the steady state; π, i and bgdp are in percent and at annual rates.
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