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Abstract

What are the implications of increased price flexibility on output volatility? In a simple

DSGE model, we show analytically that more flexible prices always amplify output volatility

for supply shocks and also amplify output volatility for demand shocks if monetary policy

does not respond strongly to inflation. More flexible prices often reduce welfare, even under

optimal monetary policy if full efficiency cannot be attained. Our results extend to a model

with both sticky information and/or wages. We estimate a quantitative DSGE model using

Bayesian methods and using counterfactual experiments show that our results from the

simple model continue to apply.
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1. Introduction

In this paper we explore the consequences for output volatility of an exogenous increase

in price flexibility. Our main thought experiment is a comparative static. Taking the price

flexibility parameter as exogenously given (for example, the expected price duration of a

Calvo (1983) pricing firm), our experiment asks what the implications are of making this5

parameter move towards greater price flexibility. Does output volatility increase or decrease?

There are many reasons why one might be interested in the answer to a question of this

kind. For one, the surge of online retailing may make prices move more frequently and thus

correspond more closely to the flexible price benchmark. Does this imply that price rigidities

will become irrelevant in the foreseeable future? A thought experiment in similar spirit can10

be found in a classic paper by Woodford (1998), contemplating a “cashless limit.” In this

work, he explores the consequences of progressively less cash being required for transaction

services. Similarly, here, we compare the behavior of a series of economies with staggered

price setting and explore the effect of exogenously changing the frequency of price changes.

Our main result is that the answer to the question – whether an increase in the flexibility15

of prices stabilizes or destabilizes output – critically depends on two considerations. The

first is the way in which monetary policy rule is formulated – in particular, how strongly the

nominal interest rate reacts to inflation. The second is what shocks are driving the business

cycle – in particular, whether they are in broad terms “demand” or “supply” shocks.

If demand shocks drive the business cycle, then whether an increase in price flexibility20

increases or decreases output volatility will depend upon how responsive monetary policy

is to inflation. If monetary policy is not responsive to inflation, one can show in a simple

model analytically that higher flexibility is destabilizing, because it makes the real interest

rate more volatile.1 As aggregate demand depends upon the real interest rate, the higher

1The simple model we consider for our baseline results is the well-known sticky price model with a feedback
rule for monetary policy, whose equilibrium can be summarized by three equations.
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volatility of the real rate translates into higher output volatility. Meanwhile, if monetary25

policy is responsive enough to inflation, then higher price flexibility will always decrease

output volatility in response to demand shocks. In contrast, in response to supply shocks,

higher price flexibility will always increase output volatility, regardless of the monetary policy

response. We show this analytically in a simple model. The economic logic behind the result

underlying why supply shocks are always destabilizing is somewhat subtle, even paradoxical,30

especially, when monetary policy is not very responsive to inflation.2

These analytical results suggest that ultimately, whether higher price flexibility is destabi-

lizing or not is an empirical question that depends upon the relative weight of demand shocks

to supply shocks and the estimated monetary policy rule. To address this empirical question,

our paper estimates an empirical DSGE model of US economy. According to our estimates,35

monetary policy reacts strongly to inflation, and the degree to which higher price flexibility

would have been destabilizing then depends upon if supply shocks were sufficiently impor-

tant. In our estimated model, supply shocks play a relatively large role, and thus, higher

price flexibility would have been destabilizing. With several counterfactual experiments, we

verify that our analytical results continue to apply in this quantitative model.40

Our main thought experiment is rather special, and subject to a number of qualifications

and criticism. Accordingly, we consider various tractable extensions to the simple analytical

model. One important issue concerns implications for welfare, especially as some supply

shock driven business cycles are efficient in standard models. The simple model used to

derive analytical results features a well-known approximation to household welfare and so we45

address this question analytically in that set-up. Results show that welfare can decline with

increased price flexibility even for efficient supply shocks (productivity shocks, for instance),

as the welfare loss associated with the increase in inflation volatility can dominate the gains

from the stabilization of the welfare relevant output gap volatility.3 Similarly, an important

2We therefore, devote considerable space in discussing the economic logic in the paper.
3Obviously, the large weight that inflation receives in the welfare approximation in this class of model
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issue is the specification of monetary policy. In particular, our analysis considers a classic50

Lucas critique of our baseline experiment: Since in our baseline model, the policy rule is

kept fixed as we change the frequency of prices one might ask: What happens, if instead,

the government sets optimal policy under discretion and changes its policy in response to

the higher frequency of price changes? We find that the same basic results apply. In a

similar spirit, our analysis considers a particular type of non-responsive monetary policy:55

the central bank is constrained by a binding zero lower bound on nominal interest rates but

otherwise acts optimally under discretion. Results show the same basic result in this case as

the general case when monetary policy is unresponsive to inflation, which is consistent for

instance, with the results in Eggertsson (2010).

Next, our analysis considers models with other nominal frictions as it is important to60

establish that our results are not too specific to a model with sticky price frictions only.

First, our analysis uses an extended version of the model with both sticky nominal prices

and wages. In this set-up as well, and regardless of whether our analysis considers only

output volatility or welfare and whether our analysis considers a simple monetary policy

rule or optimal policy, our results continue to apply.4 Next, our analysis incorporates sticky65

information as in the classic paper by Mankiw and Reis (2002). In particular, our analysis

considers a model variant that features both sticky information and sticky prices. Similar

results as our baseline case continue to apply for aggregate volatility when we make either

information or prices more flexible.5

Our paper is related to several strands of the literature. In recent years, for example,70

there has been an explosion in empirical research addressing the empirical question of how

frequently prices adjust (see for example, Bils and Klenow (2004), Klenow and Kryvtsov

has been criticized to be not very realistic. We agree with the spirit of this criticism and for this reason do
not do a micro-founded welfare evaluation in the empirical model. We simply want to make a point with
this exercise in simple models that are analytically tractable.

4In fact this case, as we emphasize in detail in the paper, is particularly interesting as efficient productivity
shocks lead to a trade-off for optimal policy.

5In the model with just sticky information, we also present some results on welfare.
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(2008), and Nakamura and Steinsson (2008)). This literature has found that prices adjust

between once every five months on average to above one year.6 For a casual reader of this

literature the question posed by this paper may then strike as odd. It might seem obvious that75

more flexible prices make monetary frictions as given by rigid prices – and more specifically

monetary policy – play little or no role in stabilizing or destabilizing the business cycle. The

most basic point of this paper is that this conclusion is far from obvious and one can easily

make the opposite case.

Moreover, the question – whose answer is sometimes taken as being self-evident – is in80

fact an old and classic question in macroeconomics and one that remains unsettled. To make

this clear we have stolen the title from De Long and Summers (1986), a paper published

25 years ago. They use a dynamic IS-LM model with rational expectations and Taylor-type

wage contracts to show that an increase in flexibility can increase output volatility when

demand shocks are perturbing the economy. But this argument goes even farther back as85

these authors point out. A similar observation is made, for example, by Tobin (1975) using a

more old-style Keynesian model. Similarly, Keynes (1936) declared that “it would be much

better that wages should be rigidly fixed and deemed incapable of material changes, than

the depression should be accompanied by a gradual downward tendency of money-wages”

using more informal arguments. In fact, the question about the relationship between price90

flexibility and output volatility even pre-dates Keynes. As early as 1923, Fisher (1923, 1925)

saw the business cycle as “largely a dance of the dollar:” According to Fisher, expected

deflation leads to high anticipated real interest rates that suppresses investment and output.

That increase in price flexibility can be destabilizing has already been noted in the liter-

ature on the zero bound on short term nominal interest rates (see e.g. Eggertsson (2010)).95

Gaĺı (2012), focusing on wage flexibility, also shows that an increase in wage flexibility may

reduce welfare in a series of numerical examples in a model with both price and wages rigidi-

6For a survey of this literature, see Klenow and Malin (2010).

4



ties under optimal monetary policy while Gaĺı and Monacelli (2016) extend the results to an

open economy. Relative to this literature, our main contribution is to show via a series of

analytical propositions when exactly price and/or wage flexibility is destabilizing for either100

output and/or welfare under general specifications for policy, both in terms of policy rules

and optimal monetary policy. Moreover, our paper shows all these results at positive interest

rates, which makes it clear that they are not being driven by a specific thought experiment

of a binding zero lower bound that renders monetary policy non-responsive. Importantly, we

show how the results depend upon different shocks together with the policy reaction function105

of the central bank.7 Finally, unlike the previous literature, we also estimate a medium-scale

DSGE model, which allows us to verify the analytical predictions of our model as we conduct

empirically relevant counterfactual experiments.

2. A Simple Sticky Price Model

This section presents the textbook three-equation sticky price model and addresses the110

main questions of this paper analytically. Since this model has become standard by now, we

do not write up the micro-foundations, which can be found in textbooks such as Woodford

(2003). To fix notation the following contains the main elements of the model as needed.

2.1. Does an increase in price flexibility increase output volatility?

Consider the standard New Keynesian model with time-dependent pricing as in Calvo

(1983). From the optimization problem of the firm, which chooses its price anticipating that

it only gets to revisit this choice with an exogenous probability 1− α every period, one can

derive the optimal pricing equation. A log-linear approximation of the model and firms’

pricing decisions implies the New Keynesian Phillips curve, or the “AS” equation

πt = κŶt − κŶ n
t + βEtπt+1 (1)

7Gaĺı (2012), for example, only considers productivity shocks in his analysis.
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where πt is inflation, Ŷt is output in log-deviation from steady state, and Ŷ n
t is a disturbance

term, often called the “natural level” of output. The parameter κ ≡ (1−α)(1−αβ)
α

φ+σ−1

1+φθ
> 0

measures the slope of the Phillips curve, where β is the discount rate, φ−1 is the Frisch

elasticity of labor supply, σ is the intertemporal elasticity of substitution, and θ is the

elasticity of substitution among different varieties of goods. Our focus lies in what happens

as we increase “price flexibility.” We interpret this as increasing the exogenous probability

of adjusting prices, that is 1− α, which results in a higher κ. Ŷ n
t is given by

Ŷ n
t =

1 + φ

σ−1 + φ
At −

1

σ−1 + φ
µt (2)

where At denotes productivity shocks and µt markup shocks of firms.8 These shocks appear115

in the AS equation in exactly the same way, hence for the moment we will simply refer to

shocks to the natural level of output as productivity shocks, At, or “supply shocks”. The

distinction between these different sources of variation in the natural level of output will

become relevant when our analysis considers welfare.

From the households maximization problem, one obtains as a log-linear approximation to

the Euler equation, the “IS” relationship

Ŷt = EtŶt+1 − σ(̂ıt − Etπt+1) + ψt − Etψt+1 (3)

where ı̂t is the nominal interest rate and ψt is an exogenous preference shock. We refer to

this as “demand shock” since it only affects the IS equation.9 Monetary policy is given by a

8We can also include time-varying labor taxes τ̂wt in the model, which will show up as 1
σ−1+φ τ̂

w
t in this

expression. It will imply the same results later in the paper as markup shocks.
9This specification cleanly separates the main effects we are interested in – that is, exogenous forces that

perturb the IS equation on the one hand – “demand shocks” and exogenous forces that perturb the AS
equation on the other – “supply shocks”. The preference shock and productivity shock are clear examples
of shocks that affect only one of these margins, but there are other shocks that may affect both, such as
exogenous variations in government spending (which both has a direct demand effect and a “wealth effect”
via labor supply which changes the natural rate of output).
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reaction function of the standard “Taylor rule” type

ı̂t = φππt + φyŶt + ηt (4)

where φπ, φy > 0 are the feedback parameters and ηt is a monetary policy shock. Our

equilibrium selection device is that we look for a determinate bounded solution.10 To ensure

a determinate equilibrium, assume that the following condition is satisfied

φπ +
1− β
κ

φy > 1. (5)

Finally, our analysis assumes that each of the exogenous processes At, ψt, and ηt follow a120

first-order AR process with persistence ρi and i.i.d. component εit where i indexes A,ψ, or

η. One can now state the following lemma.

Lemma 1. Suppose each of the following shocks are independent of one another (ψt, At, ηt),

and follow an AR(1) with persistence ρi, i = ψ, η, A. Then the variance of output that can

be attributed to each shock is given by

V AR(Ŷt/ψt) =

(
σ(1− βρψ)(1− ρψ)

(1− ρψ + σφy)(1− βρψ) + σκ[φπ − ρψ]

)2

V AR(ψt),

V AR(Ŷt/At) =

(
κσ[φπ − ρA]

[(1− ρA + σφy)(1− βρA) + κσ[φπ − ρA]]
γA

)2

V AR(At),

V AR(Ŷt/ηt) =

(
σ (1− βρη)

(1− ρη + σφy)(1− βρη) + σκ[φπ − ρη]

)2

V AR(ηt)

where γA = 1+φ
σ−1+φ

.

Proof. In Appendix A.

Following this lemma, one can now state the first key proposition.125

10Determinacy is required for the comparative static we study to be well defined. If there is indeterminacy
it is not clear which equilibria to pick so whether increasing flexibility is stabilizing or not may depend on
equilibrium selection in an arbitrary way.
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Proposition 1. The effect of higher price flexibility on output variance is given by

If φπ − ρψ > 0, then
∂V AR(Ŷt/ψt)

∂κ
< 0;If φπ − ρψ < 0, then

∂V AR(Ŷt/ψt)

∂κ
> 0,

∂V AR(Ŷt/At)

∂κ
> 0 for any values of φπ, ρA,

and

If φπ − ρη > 0, then
∂V AR(Ŷt/ηt)

∂κ
< 0; If φπ − ρη < 0, then

∂V AR(Ŷt/ηt)

∂κ
> 0.

Proof. In Appendix A.

The proofs of both the lemma and the proposition are straight-forward. To provide the

intuition, it is useful to write out explicitly the unique bounded solution and graph it up.

2.1.1. Discussion: Demand shocks

Let us assume first that ψt is the only source of economic fluctuations. Under this assump-

tion, since the model is linear and ψt is the only state variable, eqn.(5) guarantees a solution

of the form Ŷt = Yψψt, πt = πψψt, and ψt = ρψψt−1 + εt where Yψ and πψ are coefficients

to be determined. This implies that EtŶt+j = ρjψYψψt, Etπt+j = ρjψπψψt. Consider now the

solution in period t, which we subscript with S (for short run): ŶS = Ŷt = Yψψt (once the

economy has been perturbed by a shock ψt = ψS 6= 0). The IS equation can be combined

with the policy rule to yield an aggregate demand, “AD” equation

(1− ρψ + φyσ)ŶS = −σ(φπ − ρψ)πS + (1− ρψ)ψS (6)

where we have substituted EtŶt+1 = ρψŶS and Etπt+1 = ρψπS. The AS equation is similarly

(1− ρψβ)πS = κŶS. (7)
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For later purposes, note here that the slope of the AD equation given by eqn.(6) depends on130

whether (φπ − ρψ) ≷ 0.

The AD and AS relationships as given by eqns. (6) and (7) are plotted in Figure 1 Panel

(a) for the case in which φπ > ρψ. The figure shows the effect of a negative demand shock,

from AD1 to AD2 under two assumptions, that is, when prices are rigid or more flexible

(shown via a steeper AS curve). Under rigid prices, a given drop in demand results in a135

steeper contraction (point A) compared to the case when prices are more flexible (point B).

The reason for this is relatively simple. In this economy, production is demand-determined,

that is, the firms produce as many goods as are demanded by the customers that show up

in front of their doors. This demand, however, depends not on any measure of price rigidity,

but instead only on expectations about future output and the difference between the real140

interest rate and the demand shock (ψt − Etψt+1). To clarify things further, let us for a

moment assume that ρψ = 0. Then the expectation terms drop out since the economy is

in steady state the next period. The central bank responds to a negative demand shock in

the short run by cutting the nominal interest rate (since φπ > 0). This cut, however, will

be bigger the greater is the drop in inflation associated with the demand shock. As prices145

become more flexible, then, the central bank cuts the nominal interest rate by more, and

thus has a bigger effect on demand.

Consider now the case when ρψ > 0, that is when the shock is more persistent. The logic

described above still applies but some additional effects come into play. A persistent shock

influences aggregate demand in two ways, as can be seen in eqn.(3): a more persistent shock150

changes both expected inflation and expected output. In particular, a persistent negative

shock can potentially reduce future inflation expectations to such an extent that it actually

destabilizes demand. To see this, consider an increase in ρψ for a given φπ. As we see from

eqn.(6), this means that the AD curve becomes steeper, suggesting that a given nominal

interest rate cut (in response to a reduction in πS) now leads to a smaller increase in demand155

because once the shock is persistent, it not only triggers a reduction in current nominal
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interest rate today, it also triggers expectations of lower inflation in the future. The lower

expected inflation in the future, in turn, increases the real interest rate, thus offsetting some

of the expansionary effect of the decline in the nominal interest rate today. If the shock is

persistent enough, and the interest response weak enough, the effect given by lower expected160

inflation can be so strong that it dominates and AD becomes upward sloping. Figure 1 Panel

(b) shows the effect of a demand shock in the short run when φπ − ρψ < 0. In this case, an

increase in price flexibility leads to a bigger output contraction, from point A to point B.

Then, price flexibility is destabilizing in the face of demand shocks.

Let us now comment upon the intuition for the monetary policy shock ηt. The intuition165

is exactly the same as for ψt. To see this, just note that if we substituted for the monetary

policy reaction function given by eqn.(4) into the IS equation given by eqn.(3), then the

shock ηt appears exactly in the same way as ψt − Etψt+1.

2.1.2. Discussion: Supply shocks

The case of the supply shock leads to additional insights. Here, we find that regardless of170

the monetary policy reaction function, the variance of output always increases with higher

price flexibility. The reason is that while output increases in response to a positive technology

shock when policy reacts strongly to inflation it decreases when the interest rate does not

respond strongly enough.11 And both these reactions get exaggerated, the higher is the

degree of price flexibility. This, then, increases output variance unambiguously.175

The required derivations are very similar to the case above and so we present them in

Appendix A and move directly to discussing a presentation based on Figures. Figure 1 Panel

(c) shows the effect of a productivity shock when φπ > ρA and policy responds strongly to

inflation. A positive technology shocks shifts out the aggregate supply curve as it reduces the

marginal costs of firms so that they can now produce more output with the same inputs. For180

11This is thus a generalization of the so-called paradox of toil, see Eggertsson (2010)), to a case that applies
even at positive interest rates.
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this to show up in more aggregate output, however, the consumers will need to be induced

to buy more. Under the assumption that φπ > ρA, the AD curve is downward sloping

because the central bank will cut the nominal interest rate in response to a drop in inflation.

Consider first the case when the supply shock is i.i.d. so that ρA = 0. The increase in output

then happens via cuts in the nominal interest rate, and the greater the drop in the price185

level, the bigger is the drop in the nominal interest rates. This then leads to a more robust

expansion. Consider now ρA > 0. The figure is unchanged for low enough values of ρA but

there are now additional forces at work because the supply shock not only triggers a drop

in the nominal interest rate. The fact that it is persistent may also affect expected inflation

Etπt+1 = ρAπAAt. Note that this effect is contractionary, because it leads to lower future190

expected inflation which increases the real interest rate. This means that the AD curve in

Figure 1 Panel (c) is now steeper and the expansionary effect of the supply shock is smaller

(but more price flexibility still leads to a bigger expansion).

If ρA is large enough, or alternatively φπ low enough, so that φπ < ρA, then the contrac-

tionary effect of lower expected inflation is dominating and the AD curve becomes upward-195

sloping in the (YS, πS) space as shown in Figure 1 Panel (d). As we can see here then

technology shocks are contractionary as improvement in technology triggers deflationary ex-

pectations that increase the real interest rate. This effect is stronger with more flexible prices

because then the increase in expected deflation is higher. Accordingly, as shown in Figure 1

Panel (d), the drop in output is bigger. Hence, more flexible prices lead to higher variance200

of output under both policy specifications.

2.2. Does an increase in price flexibility increase welfare?

Our focus so far has been on output volatility, partly because this has been a focus of

the previous literature cited in the introduction, but also, and perhaps surprisingly, because

considering the most popular welfare criterion will in fact generate even somewhat starker

results in certain respects regarding what constitutes non-responsive monetary policy. In
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the context of our model, a natural criterion is the unconditional welfare of the representa-

tive household, which as shown in Woodford (2003), can be approximated via second-order

approximation around an efficient steady state to yield12

W ∝ −
[
θ

κ
V AR (πt) + V AR

(
Ŷt − Ŷ e

t

)
+ t.i.p.

]
. (8)

where t.i.p. denotes “terms independent of policy.”13 The term Ŷ e
t corresponds to Ŷ e

t =

1+φ
σ−1+φ

At and denotes variations in the efficient level of output.

We see that relative to the total output variability, this criterion is different as it involves205

(i) the appropriately weighted variability of inflation and (ii) the welfare-relevant output gap

(output variation relative to efficient variation in output due to (only) one of the supply

shocks At). The next lemma, which computes the contribution of inflation variability to

social welfare as well as that of the output gap, greatly facilitates understanding why we can

get a weaker condition for non-responsive monetary policy to lead to a decrease in welfare.210

Lemma 2. The effect of higher price flexibility on the welfare-weighted inflation volatility

is given by

∂ θ
κ
V AR (πt/jt)

∂κ
> 0 if φπ − ρj < Γj for j = A,ψ, η and µ,

∂ θ
κ
V AR(πt/jt)

∂κ
< 0 if φπ − ρj > Γj for j = A, ψ, η and µ,

where Γj ≡ (1−ρj+σφy)(1−βρj)
κσ

> 0. The effect of higher price flexibility on the welfare relevant

output gap for technology shocks, is given by

If (φπ−ρA) > 0, then
∂V AR(Ŷt − Ŷ e

t /At)

∂κ
< 0; If (φπ−ρA) < 0, then

∂V AR(Ŷt − Ŷ e
t /At)

∂κ
> 0.

12For simplicity we express the welfare function for the limiting case in which β− > 1 to facilitate com-
parison with our earlier result.

13Note here that we are only considering the welfare effect of the element of the loss function that interacts
with policy decisions, we do not consider how an increase in price flexibility may affect the term t.i.p, that
is, the “terms independent of policy.”
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Proof. In Appendix A.

Note first that for the demand shock, the welfare relevant weighted inflation volatility

goes up when φπ − ρψ < Γψ > 0. We already know that output volatility, which for this

shock means welfare relevant output gap volatility, goes up when φπ − ρ
ψ
< 0. Thus for

the demand shock, considering the welfare criterion in eqn. (8) actually leads to a weaker215

condition than the one we need just for output. Whenever output volatility goes up, welfare

goes down unambiguously for demand shocks. Moreover, since Γψ > 0, and the condition for

price flexibility stabilizing output volatility was φπ − ρψ > 0, we have a range of parameters

Γψ > φπ − ρψ > 0 when higher price flexibility reduces output volatility, but still reduces

aggregate welfare due to the negative effect it has on inflation volatility.220

Next for markup shocks, output volatility, which means welfare relevant output gap

volatility, goes up regardless of the monetary policy reaction function. Lemma 2 above

shows that the welfare relevant inflation volatility goes up when φπ − ρµ < Γµ > 0. Then

clearly φπ−ρµ < Γµ > 0 is a sufficient condition for welfare to go down. Thus, the condition

is weaker than requiring a non-responsive monetary policy of the type: φπ − ρµ < 0.225

Finally, for the technology shock, note that taking into account the welfare relevant output

gap implies that the variance goes up with price flexibility only when φπ − ρA < 0. But note

that the welfare relevant inflation volatility goes up for a weaker condition, φπ−ρA < ΓA > 0.

Therefore, we will find that for technology shocks, a weaker condition than φπ − ρA < 0 will

be needed to get welfare to decrease with increased price flexibility. Thus, when output gap230

variance goes up, it is sufficient to imply that welfare will go down. That is, the negative effect

on welfare due to the increase in inflation volatility will dominate the welfare improvement

due to the reduction in output gap variance for technology shocks under conditions that are

weaker than φπ−ρA < 0 . These results are then formally shown in the Proposition below.14

14For markup shocks, the necessary and sufficient condition is in the Appendix as it is not very clean.
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Proposition 2. (i) The effect of higher price flexibility on welfare for demand shocks is

given by

∂W (./ψt)

∂κ
< 0 if (φπ − ρψ) < Λψ;

∂W (./ψt)

∂κ
> 0 if (φπ − ρψ) > Λψ

where Λψ ≡ θ(1−βρψ)(1−ρψ+σφY )

σ(2(1−βρψ)2+κθ)
> 0. (ii) A sufficient condition for higher price flexibility to

have a negative effect on welfare for markup shocks is given by

φπ − ρµ < Γµ.

(iii) The effect of higher price flexibility on welfare for technology shocks is given by

∂W (./At)

∂κ
< 0 if (φπ − ρA) < ΛA;

∂W (./At)

∂κ
> 0 if (φπ − ρA) > ΛA

where ΛA ≡ θ(1−βρA)(1−ρA+σφY )
σ(2(1−βρA)2+κθ)

< ΓA.235

Proof. In Appendix A.

In sum, overall, a weaker condition than φπ − ρj < 0 is required to generate welfare loss

from increased price flexibility regardless of the shock. In particular for demand and tech-

nology shocks, variance of output/output gap increasing is sufficient to imply that welfare

will decrease with increased price flexibility. Our results focussing on welfare are then even240

starker than those focussing on output or output gap. A brief remark however, is in order.

This result overall depends critically on two aspects. First, as price flexibility increases, the

weight on inflation, that is θ
κ
, goes down as the level of price flexibility increases and ac-

cordingly the volatility of inflation. One alternative is to assume commonly used preferences

for the policy maker in policy institutions, λππ
2
t + λy(Ŷt − Ŷ e

t )2, where the weights do not245

depend on the degree of price flexibility. Second, the implied high weight on inflation in

the micro-founded welfare criterion might be unrealistic, which is why in empirical work an

equally-weighted objective, with λπ = λy = 1
2
, is often used. Our analysis therefore considers

this more stringent alternative in the quantitative model.

14



3. Quantitative Analysis250

This section performs a quantitative evaluation of the effects of greater price flexibility

on output volatility.15 The results in the simple model suggested that the output effect of

greater price flexibility depended on the identity of underlying shocks and the endogenous

response of monetary policy, suggesting that the answer to the key question is empirical. To

address the empirical question, our analysis fits the well-known Smets and Wouters (2007)255

model to U.S. data.16 We estimate the structural parameters and the underlying historical

shocks. Conditional on the estimated values for all other parameters of the model and the

estimated historical shocks the analysis performs several counterfactual experiments.

3.1. Estimation

We refer the reader to the Smets and Wouters (2007) paper for a detailed description of the260

model, which by now is largely standard, and to our working paper for other estimated model

alternatives.17 The complete model and the log-linearized equations are in Appendix B. Our

estimation of the model differs only in some instances from the exact exercise in Smets and

Wouters (2007). The difference lies in that incorporated in the original estimation in Smets

and Wouters (2007) are markup shocks that are scaled by the price flexibility parameters.265

Since our focus lies in changing the price flexibility parameter, rather than treating it as

fixed in counterfactual experiments, we re-estimate the model so that the estimated markup

shocks are independent of nominal flexibility parameter.18 Overall, since our exercise is

15As we describe in detail later, we focus on variance of (model consistent) detrended output. We do
not undertake a complete exercise on model implied welfare in this section, but instead just look at simple,
empirically relevant, welfare functions that weigh inflation and output gap differentially.

16We use quarterly U.S. data from 1966:I -2004:IV on log difference of real GDP, real consumption, real
investment, real wage, and the GDP deflator, log hours worked, and the federal funds rate.

17In a working paper version of the paper, we estimate two well known alternatives to the SW model
and find largely comparable results. These alternatives addressed some short-coming on identification and
interpretation of shocks in the original Smets and Wouters (2007) paper. Note also that an alternative
interpretation of the wage/price mark-up shocks is that they are shocks to the Calvo probability.

18Otherwise, in making prices more or less flexible, this would artificially change the volatility of the
“fundamental shocks” which we are taking as exogenous. Moreover, we use not just the posterior mean, but
also the entire distribution of the estimates in our counterfactual experiments. Thus we cannot directly read
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extremely close to that of Smets and Wouters (2007), the estimates are in line with their

results. The only exceptions are the estimates pertaining to the price and wage markup270

shocks for reasons described above.

All the details of the estimation, including the prior distributions and the posterior esti-

mates, are in Appendix C. The two most important aspects in light of the simple model are

the monetary policy rule and the shocks considered in the model. One point worth empha-

sizing here then is that the policy rule is estimated with a Taylor rule coefficient on inflation275

of φπ = 2.07. This puts us in the parameter region in which price flexibility is stabilizing

for demand shocks while destabilizing for supply shocks. Finally, the economy is driven by

seven fundamental aggregate shocks: shocks to total factor productivity, investment-specific

technology, risk premium, exogenous government spending, monetary policy shock, price

markup, and wage markup.280

3.2. Counterfactual Experiments

Given the structural estimation, we now describe our counterfactual exercises that com-

plement our analytical results in the previous section.

3.2.1. Baseline counterfactual comparative static

Our first counterfactual experiment is a comparative static on price flexibility. Taking the285

(posterior mean) estimates of the model and policy rule parameters as given and considering

all shocks, Panel (a) of Figure 2 shows for a whole range of price stickiness the implied

(unconditional) volatility of (de-trended) output.19 The Figure normalizes the variance of

output at our posterior mean estimates to 1 and shows how the variance changes as the

probability of price adjustment increases. For reference, the vertical lines show the posterior290

off the estimates from Smets and Wouters (2007).
19This is model-consistent de-trended output. As the estimated model features deterministic growth,

output is made stationary by de-trending it by the level of technology.
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mean of probability of price adjustment as well as the 90% probability intervals.20 As is

clear, except at a small range very close to full price rigidity, making prices more flexible

increases output volatility monotonically. This result reflects the fact that according to our

estimates, supply shocks play a non-trivial role in explaining output variation.

Next, in light of the results from the simple model regarding welfare, we consider the295

same exercise, but now for inflation volatility, (welfare relevant) output gap volatility, and

an often-used welfare function that considers an equally weighted variance of inflation and

output gap.21 Panels (b)-(d) show that increased price flexibility unambiguously increases

inflation volatility, and again except for a small range close to full price rigidity, increases

output gap volatility and decreases the equally weighted average of inflation and output gap.300

The result on increased inflation volatility is intuitive. Additionally, the result on increase

in output gap volatility reflects the fact that according to our estimates, inefficient supply

shocks play a non-trivial role in explaining output variation. Finally, welfare, according to

our measure, declines as both inflation and output gap volatility increase with flexibility.

3.2.2. Marginal posterior distribution of derivatives305

The baseline exercise is a natural counterfactual experiment. Our focus, however, has

been a comparative static exercise where the price stickiness parameter can be very far from

the estimated credibility set. We next implement an exercise that uses the entire posterior

distribution of our parameter estimates. In particular, we present the marginal posterior

distribution of the (numerical) derivative of output with respect to price stickiness, evaluated310

at the posterior mean. Panel (a) of Figure 3 presents the results on output.22 According

20Since our baseline estimation does not feature measurement error, using smoothed series of shocks
together with posterior mean of parameters would lead to the same volatility of output growth, which is
what we use in the estimation exercise. Also, note that we plot 1− ξp , where ξp is the probability of price
adjustment in our notation in the model in the Appendix.

21This equally weighted function can be thought of as resembling the dual mandate of the Federal Reserve.
22In this Figure, the marginal posterior distribution is plotted with frequency on the y-axis and the

numerical derivatives on the x-axis.
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to the estimation this derivative is never negative.23 Panels (b)-(d) show results from the

same exercise but now for inflation, output gap, and an equally weighted average of inflation

and output gap. Looking at the entire marginal distribution, the derivative is positive for

inflation, positive for output gap, and negative for the simple measure of welfare. To sum315

up, given our estimates, this result shows that the marginal posterior distribution of the

derivative of output with respect to price flexibility is always positive while the derivative of

welfare with respect to price flexibility is always negative in the estimated model.

3.2.3. Shocks and monetary policy response

We next analyze in further detail two key aspects highlighted in the analytical results:320

output volatility and welfare increase or decrease with greater price flexibility depend on (i)

the monetary policy response to inflation and (ii) the nature of shocks. For (ii) it matters

whether supply shocks or demand shocks dominate in terms of explaining the variation in

the data explained by the model.

Our analysis first shows how the derivative of output volatility with respect to price325

stickiness depends on φπ. Panel (a) of Figure 4 show that in a large range of values such that

the monetary policy rule satisfies the Taylor principle (φπ > 1), this derivative is positive.

For reference, the vertical lines show the posterior mean of φπ as well as the 90% probability

intervals. We next do this same exercise, but for inflation, output gap, and an equally

weighted average of inflation and output gap. Panels (b)-(d) of Figure 4 shows that the330

derivative is positive for inflation and output gap and negative for the weighted average

in a large range of values such that φπ > 1. These results verify that the result derived

in our analytical model in a richer structural one, but recall they suggested that when

monetary policy is responsive (to inflation), output, inflation, and output gap volatility all

23Thus, the property we saw above where at close to full price rigidity, the variance of output can decrease
with increased price flexibility is not empirically relevant for us, given the posterior distribution of our
estimates. Moreover, note that all that is relevant for us here is whether this derivative is positive or
negative.
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are expected to increase in response to supply shocks and the estimation is suggesting that335

inefficient supply shocks explain a non-trivial variation of output in the data.

Our analysis next shows how the derivative of output volatility with respect to price

stickiness depends on relative volatility of the shocks that are in the estimated model. This

gives us a metric of how the results depend on how dominant each type of shocks are in the

model. In particular, our measure of relative volatility is the ratio of standard deviation of340

a given shock to the sum of the standard deviation of all the seven shocks in the model.

Figure 5 shows that the derivative is positive, and increasing in the relative volatility for the

supply shocks (technology, price markup, and wage markup), while it is also positive but

decreasing in the relative volatility for demand shocks (risk premium, government spending,

monetary policy, and investment specific).24 A vertical line shows the relative volatility345

of the shock according to our posterior mean estimates. The two dashed line show the

90% probability intervals. This is consistent with our analytical results that supply shocks

are always destabilizing with higher price flexibility while higher flexibility is stabilizing in

the case of demand shocks. Thus, in principle, if demand shocks were estimated to be of

sufficiently larger importance, the overall derivative could be negative. The 90% probability350

intervals however, suggest that none of the demand shocks are significant enough for the

output variance derivative to switch sign according to our estimation. The key reason, as

emphasized earlier, is the large role of the estimated supply shocks which account for the bulk

of fluctuations in the estimated model.25 We finally show how the derivative of a weighted

average of variance of inflation and output gap with respect to price stickiness depends on355

relative volatility of the shocks. To conserve space, our exposition shows results for the

weighted average instead of inflation and output gap separately. Figure 6 shows that this

24Note that we are primarily only interested in whether these derivatives are positive or negative. To get
a sense of magnitudes however, we can convert these derivatives to elasticities. As an example, for the wage
markup shock, the elasticity of output variance with respect to price flexibility at the posterior mean of
relative volatility would be 0.42.

25In a working paper version we consider two popular alternatives to this model and re-estimate the relative
importance of supply and demand shocks and find this result to be robust.
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derivative is always negative, i.e. increasing price flexibility reduces welfare.

3.2.4. An extreme example

For reference it is helpful to get a sense of an upper bound on the role nominal rigidities360

can play according to the estimated model. If we run a counterfactual experiment in which

there is no nominal rigidity (in either prices or wages), the standard deviation of annualized

output growth doubles. It increases from 2.2 percentage points to 4.4 percentage points.26

4. Extensions

This section considers several extensions, in particular those pertaining to the simple365

model for which there are analytical results.

4.1. Monetary policy rules and optimal policy

The simple model considered a simple Taylor-type rule, as given by eqn.(4), as a descrip-

tion of monetary policy. Our analysis now considers several variants of such rules that are

popular in applied work, allowing for a welfare-relevant output gap, interest rate smoothing,370

and a response to the growth rate of the output gap (this is in particular motivated by our

quantitative model’s interest-rate rule specification). Overall, these extensions do not have

a significant qualitative effect on the results. All the numerical results are in Appendix I.

Figure I.10 shows results for both the variance of output and welfare given both demand

and supply (markup and technology) shocks as a function of 1/(1-α), which is the expected375

duration of the price contract.27 For this exercise, we use the parameters in Table H.6, where

we point out that we use φπ = 1.5.28 Note that this parametrization implies that monetary

policy is “responsive.” Then, in line with our analytical results, Figure I.10 shows that for all

26Note that we report here the effects on growth rate of output as that is the data we use in the estimation.
27Figure I.10 contains the exact specification of the policy rules we use.
28Our baseline parameterization in Table H.6 of κ = 0.02 corresponds to duration of 3.2 quarters. We

only provide numerical results here since analytical results are tedious with interest rate smoothing.
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of the Taylor rule specifications, for demand shocks, the variance of output decreases with

increased price flexibility while for supply shocks, it increases. In the case of the unrespon-380

sive policy the opposite result for demand shocks (as in the analytical section) while the sign

remains the same for supply shocks.29

Moving to welfare, one can also confirm our theoretical results across all policy rules.

The figure shows clearly that for all the Taylor rule specifications and for all the shocks,

welfare decreases with increased price flexibility for a high enough level of price stickiness.385

Once prices are flexible enough, however, then welfare improves with further increases in

price flexibility, much as our theoretical results suggested. Interestingly, this inflection point

occurs later for the alternative policy rules, suggesting that our result that increasing price

flexibility can be welfare-reducing applies to an even broader parameter range for these

alternative policy rules.30
390

So far, we have discussed the effects on output volatility and welfare of increased price

flexibility while modeling monetary policy as following an interest-rate rule. Thus, the

increase in price flexibility does not change the policy reaction function of the government at

the same time. How sensitive is our conclusion to allowing for the feature that an increase

in κ may simultaneously change government behavior, for example, φπ or φy? In order

to address this question one needs to have some theory of how the government behaves in

response to changes in the level of stickiness in price setting. One approach is to assume

that policy is determined to maximize social welfare, so that policy may then endogenously

react if there is a change in κ. Hence the government maximizes eqn.(8) subject to eqns.(1)

and (3).31 Consider first optimal policy under discretion (Markov Perfect equilibrium), that

is, the government maximizes welfare but is unable to commit to future policy. Then the

first-order conditions of the government maximization problem can be combined to yield the

29Since it is not empirically the most relevant, we do not report the unresponsive case here.
30Notice that for preference and markup shocks, the results in the Figure are identical whether we have

output or the welfare-relevant output gap in the Taylor rule.
31All the details of the derivation are contained in the appendix.
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following relationship between output and inflation

θπt + (Ŷt − Ŷ e
t ) = 0. (9)

We see that this relationship, the so-called “targeting rule,” is independent of the degree of

price flexibility. In particular, observe that if the only shocks in the economy are At and

ψt this relationship implies an equilibrium in which πt = Ŷt − Ŷ e
t = 0 at all times. This

means that neither output nor inflation volatility depends upon the degree of price rigidity.

Compared to our previous policy rule in eqn.(4), discretion thus corresponds to the special395

case when φπ →∞, that is, the central bank completely offsets any effect of preference and

technology shocks on inflation.

It is easy to see that in this case, also, changes in price rigidities have no effect on

welfare since the central bank is fully replicating the flexible price, and thereby, the efficient

allocation. We show this result formally in the Appendix. This result, however, is relatively400

special and relies heavily on the “divine coincidence” feature demonstrated by Blanchard and

Gaĺı (2007) in the most simple variation of the New Keynesian model. However, this divine

coincidence is absent in a more general setting (with wage frictions), as we shall shortly see.

Moreover, for a more general specification of the shocks, and when the first best is no longer

obtained, our previous results are unchanged as we now demonstrate.405

Thus, let us consider a case when the first best is not achieved due to an inefficient supply

shock µt. In this case, Ŷ e
t = 0, and there is a trade-off between inflation and output. In this

case one can prove the following proposition.

Proposition 3. Suppose monetary policy is set optimally under discretion and the markup

shock µt follows an AR(1) process. Then the variance of output is given by

V AR(Ŷt) = θ2

(
κ

1 + κθ − βρu

)2

V AR(µt)
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which is always increasing in price flexibility so that

∂V AR(Ŷt)

∂κ
=

θ2(1− βρu)2κ
(1 + κθ − βρu)3

V AR(µt) > 0.

Similarly, welfare is decreasing in price flexibility

∂W

∂κ
< 0

if 1+κθ
1+2κθ

> βρµ.

Proof. In Appendix D.410

This is a close analogue to Proposition 1 which showed that output variability always

increases under a Taylor rule (and the complementary Proposition 2 for welfare). Thus,

with an inefficient shock µt and under optimal monetary policy, not only does the variance

of output increase, but welfare can also be reduced with increased price flexibility as long

as 1+κθ
1+2κθ

> βρµ. In particular, with i.i.d. shocks (ρµ = 0), welfare always declines when415

inefficient supply shocks hit the economy and monetary policy is conducted optimally under

discretion. Moreover, as before with a Taylor rule, the condition for welfare to decline with

additional increased price flexibility becomes harder to fulfill as prices become more flexible:32

limκ→∞ = 1+κθ
1+2κθ

= 1
2
. Let us also point out that the policy under the optimal commitment

has a similar flavor as outlined above.33
420

4.2. Zero lower bound

So far our analysis has not incorporated the zero lower bound on the nominal interest rate.

Given that this has been a relevant situation for many central banks recently, and especially

because of our results that even at positive interest rates, the responsiveness of monetary

32In the Appendix, we also show that the persistence of the shock matters for our condition in the
proposition as it affects strongly the variance of the welfare-weighted inflation term.

33One simply needs to modify eqn.(9) to include (Ŷt − Ŷ et )− (Ŷt−1 − Ŷ et−1) instead of (Ŷt − Ŷ et ).
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policy to inflation matters critically, we now analyze the case of the zero lower bound. For425

this we generalize the Taylor rule as ı̂t = max(β − 1, φππt + φyŶt) where ı̂t ≥ β − 1 as we

consider deviations from steady-state. Next, for tractability, consider a shock as in Eggertsson

and Woodford (2003) in which ψt = ψS < 0 in period 0 and which reverts back to steady

state ψt = ψ̄ with a fixed probability 1 − µ every period thereafter. Then it is easy to

confirm (see for example, Eggertsson (2010)) that the solution for inflation and output is430

πS = κ
(1−µ)(1−βµ)−µσκψS < 0, ŶS = (1−βµ)

(1−µ)(1−βµ)−µσκψS < 0. Thus, there is deflation and output

contraction when the zero lower bound binds. Moreover, Appendix E shows that greater

price flexibility leads to a bigger drop in output.

Hence, if the shock to ψt is large enough so that the zero bound is binding, an increase in

price flexibility is no longer stabilizing, it instead is destabilizing regardless of the value of435

φπ and φy. The logic of this proposition is in fact the same as we showed in Figure 1 Panel

(b). The intuition for this relies heavily on the fact that the nominal interest rate does not

respond strongly to the drop in inflation and output since it is stuck at zero. This is therefore

a specific case of our general non-responsive monetary policy reaction function. Finally, let

us briefly address the issue of optimal policy. Even if the government maximizes welfare as in440

the previous section, Eggertsson (2008) shows that one obtains exactly the same equilibrium

under optimal monetary policy under discretion as analyzed and presented above. It follows

that even if the government conducts policy under discretion, at the zero bound, the more

flexible the prices, the greater is the drop in output. Moreover, in Appendix E welfare also

declines with increased price flexibility in this case.445

4.3. Sticky prices and wages

So far, the analytic results of the New Keynesian model only featured price stickiness.

However, estimated models in the literature (including the one we analyze in the previous

section) typically feature both price and wage stickiness. It is worthwhile to consider how our

analytical results are affected if we allow for both price and wage stickiness. We undertake450

24



this exercise next. Our analysis is related to Gaĺı (2012), who shows that an increase in

wage flexibility may reduce welfare in a model with both price and wages rigidities under

a Taylor rule and under optimal monetary policy with commitment. Gaĺı (2012) shows

numerical results where wage flexibility is increased while price stickiness is held constant

under technology shocks. Relative to that work we study more shocks and make some useful455

simplifying assumptions regarding the extent of price and wage stickiness, which enables us

to show several results in closed-form. In particular, under these simplifying assumptions,

our analysis always considers a case where both price and wage flexibility change, and for

some shocks, the insights from the simple model with only price stickiness can be shown to

go through analytically. Finally, our analysis consider general specifications for policy and460

in particular, focuses on a case of no commitment under optimal policy, where again the

analysis from the model with only price stickiness carries over in a transparent way.34 All

these results are in Appendix F.

Our analysis uses a standard model of price and wage stickiness as described in Woodford

(2003). The private sector equilibrium conditions as well as the approximation of household465

welfare for this model are provided in Appendix F. As is well-known in this model both a

price and a wage Phillips curve appear. Moreover, in the price Phillips curve, compared to

the standard sticky price model used above for analytical results, a new term appears. This

term is the real wage gap, that is the gap between real wages and its natural counterpart.

This term is important as it leads to a trade-off for monetary policy even with technology470

shocks – so the divine coincidence no longer applies. Finally, in terms of welfare, both price

and wage inflation variability matter, together with (welfare-relevant) output gap variability.

One of our main contributions here is that by making an additional assumption that the

slopes of the two Phillips curve are the same, we obtain several insights.

First, as shown in the Appendix, under this case the model simplifies the analysis of de-475

34The case of commitment is also studied in the Appendix.
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mand shocks to exactly the same as the simple model with only sticky prices. Our theoretical

results, in particular those for welfare, then apply exactly. Second, for the technology shock,

the divine coincidence no longer holds. Then, numerically we show in the Appendix that

for both the responsive and non-responsive monetary policy case, the variance of output in-

creases and welfare decreases as nominal flexibility increases. These results are thus stronger480

than those for the technology shock under the sticky-prices-only baseline model. Third,

similar results hold when we consider optimal policy under discretion, in which case one can

derive an extended version of the targeting rule eqn.(9). Now that the divine coincidence

does not apply, the government cannot achieve the first best in response to even technology

shocks. This in turn will lead to a greater degree of output volatility and a reduction in485

welfare for a reasonable parameterization of the model, as shown in the Appendix.

4.4. Sticky prices and information

So far our analysis has considered sticky price and wage models modeling nominal rigidities

using the Calvo (1983) framework. A natural question is whether our main message also

applies to other models of nominal rigidities. To address this question, we now consider490

variants of the highly influential sticky-information model of Mankiw and Reis (2002).

In particular, this section will use the welfare criterion in this class of model derived by

Ball et al. (2005) and the variant of the model developed by Coibion and Gorodnichenko

(2011) that features both sticky prices and information. This variant allows us to change

both sticky information and sticky price parameters and also enables us to consider a case of495

not responsive monetary policy without having indeterminacy issues.35 To preserve space,

we refer the reader to the Ball et al. (2005) and Coibion and Gorodnichenko (2011) papers for

details. All the relevant log-linearized conditions as well as the utility based welfare criterion

35In the standard sticky information model, as there is no long-run trade-off between inflation and output
gap, if monetary policy does not satisfy the Taylor principle, the model does not have a determinate solution.
But remarkably, we show later that for results to be interesting, we do not even need to violate the Taylor
principle.
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from Ball et al. (2005) are in Appendix G. The model in Coibion and Gorodnichenko (2011)

features two sectors, one that has sticky prices firms and the other sticky information firms.500

Our calibration is based on the estimates in Coibion and Gorodnichenko (2011) and is also

explained in more detail in Appendix G. For reference, Table 1 provides all the parameter

values used in the exercise.

In the model with both sticky information and prices, the probability of updating infor-

mation is given by 1 − δsi while the probability of price adjustment in given by 1 − δsp.505

Figure 7 shows comparative statics with respect to these parameters for output volatility.

The share of sticky price firms, is given by s = 0.75 and we consider two main shocks: prefer-

ence and technology.36 The shocks follow a persistent process (ρ = 0.99). In the Figure, the

level of volatility in our baseline calibration is normalized to be 1. Moreover, our analysis

splits the results by the case where monetary policy is responsive (φπ = 1.5, φy = 0.25)510

and non-responsive (φπ = 0.25, φy = 1.5).37 For the non-responsive case, the Taylor rule

continues to lead to determinacy in this general model. Figures 7 shows that in this more

general model, the insights of our analytical model with only sticky prices continue to hold.

For demand shocks, with responsive monetary policy, either making information or prices

more flexible leads to lower volatility in output. In contrast, with non-responsive monetary515

policy, making information or prices more flexible leads to increased volatility in output for

demand shocks. For technology shocks, in either case of monetary policy response, making

information or prices more flexible leads to increased volatility in output.

How about welfare implications in the sticky information model? For this, we turn to

the set-up in Ball et al. (2005), which also derives the utility based welfare criterion. In this520

variant, there is only sticky information and so for the non-responsive monetary policy case,

one has to satisfy the Taylor principle for determinacy (φπ = 1.01, φy = 0.25). Shocks follow

36The initial values of δsi and δsp and the value of s are from Coibion and Gorodnichenko (2011).
37We numerically solve this model using a truncated state space. We have checked extensively that the

period we truncate at does not affect our results.

27



a persistent process (ρ = 0.99). We now only do comparative statics for the probability of

updating information 1− δsi . Figures and 8 -9 show the results, where for completeness we

show both output and welfare loss for three shocks: preference, technology, and markup. In525

the Figures, the level of volatility and welfare loss in our baseline calibration is normalized

to be 1. A pattern that is consistent with our analytical results based on the sticky prices

only model also appears here. When monetary policy responds weakly to inflation, even

though it still responds more than one-for-one, there is a greater range over which welfare

declines when information is more flexible for all three shocks. We emphasize that this is530

a general pattern. For instance, in the less responsive to inflation case, if there is a larger

response to output, then the range over which welfare declines expands further.38 Moreover,

finally note here that for output, volatility can increase in the case of preference shocks when

information is more flexible, under weak response of monetary policy.

5. Conclusion535

Our analysis in this paper explores the consequences for output volatility of an exogenous

increase in price flexibility and shows that the results depend critically on the nature of

shock and the monetary policy reaction function. Similar results hold for welfare. If demand

shocks hit the economy, output volatility goes up and welfare goes down if monetary policy

is not responsive enough to inflation; if technology shocks hit the economy, output gap540

volatility goes up and welfare goes down if monetary policy is not responsive to inflation.

Moreover, if efficiency cannot be attained, say due to inefficient supply shocks or due to even

efficient shocks in a richer model, then similar results apply even under optimal policy. We

show that our results extend to a model with both sticky prices and information. Finally,

we use an estimated quantitative model to verify the analytical results as well as conduct545

counterfactual experiments.

38In this case, for comparison, we obviously use a higher response to output also in the responsive case.
Thus, in this unreported extension we use for the two cases: φπ = 1.5/1.01; φy = 0.5.
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In the quantitative exercise using U.S. data, we find that conditional on the estimated

values of the structural parameters and shocks, increased price flexibility would indeed have

been destabilizing. The key reason for this conclusion is the important role played by supply

shocks, both efficient and inefficient, in the estimated model. For this result to be overturned,550

we suspect the model would need to be amended in such a way as to give demand shocks

a greater role. Finally, while the following two points are a bit speculative, the mechanism

we have uncovered could explain two other empirical phenomena. First, our paper may

shed some light on why the Great Recession triggered a far smaller drop in output than the

Great Depression: the Great Recession was associated with a relatively modest decline in555

inflation, while the Great Depression was characterized by excessive deflation. This could

in principle be explained by prices being more flexible during the Great Depression than

during the Great Recession, a question we leave open for future research. Second, our model

may shed light on cross-country variation in output volatility. One important factor may be

that in some countries monetary policy is relatively unstable, which may make prices more560

flexible. The model suggests that if certain shocks are driving the business cycle, this may

play a role in explaining cross-country variation in output volatility.
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Blanchard, O., Gaĺı, J., 2007. Real wage rigidities and the new keynesian model. Journal of
Money, Credit and Banking 39, 35–65.

Calvo, G.A., 1983. Staggered prices in a utility-maximizing framework. Journal of Monetary570

Economics 12, 383–398.

Coibion, O., Gorodnichenko, Y., 2011. Strategic interaction among heterogeneous price-
setters in an estimated dsge model. The Review of Economics and Statistics 93, 920–940.

De Long, J.B., Summers, L.H., 1986. Is increased price flexibility stabilizing? American
Economic Review 76, 1031–44.575

29



Eggertsson, G.B., 2008. Great expectations and the end of the depression. American Eco-
nomic Review 98, 1476–1516.

Eggertsson, G.B., 2010. What fiscal policy is effective at zero interest rates?, in: NBER
Macroconomics Annual 2010, Volume 25. National Bureau of Economic Research, Inc.
NBER Chapters.580

Eggertsson, G.B., Woodford, M., 2003. The zero bound on interest rates and optimal mon-
etary policy. Brookings Papers on Economic Activity 34, 139–235.

Fisher, I., 1923. The business cycle largely a dance of the dollar. Journal of the American
Statistical Association 18, 1024–1028.

Fisher, I., 1925. Our unstable dollar and the so-called business cycle. Journal of the American585

Statistical Association 20, 179–202.
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6. Tables610

Table 1: Parameter Values of the Sticky Price and Information Model

Parameter Value Parameter Value

β 0.99 σ 1
κ 0.01818 θ 10
ρ 0.99 φy 0.25/1.5
φπ 1.5/0.25/1.01 η 1

Note: The parameter β denotes the rate of time preference,
σ the intertemporal elasticity of substitution, θ the elasticity
of substitution among different varieties of goods, η the Frisch
elasticity of labor supply, κ = σ+η

1+ηθ the degree of strategic
complementarity, φπ the systematic response to inflation in the
Taylor rule, and φy the systematic response to output in the
Taylor rule. Other than the Taylor rule parameters, all other
parameters are from Coibion and Gorodnichenko (2011).
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7. Figures

Figure 1: Theoretical Effect of Price Flexibility on Output
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Note: The figure illustrates the effect of demand and supply shocks under respon-
sive and not responsive enough monetary policy, as defined for the simple sticky
price model in Section 2. AD denotes the aggregate demand curve, AS the aggre-
gate supply curve. Section 2 further clarifies notation.
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Figure 2: Model Estimated Effect of Price Flexibility on Key Aggregates
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(d) Effect on Welfare

Note: The figure illustrates the effect of price flexibility on the volatility of output,
inflation, the output gap and equal-weighted welfare. The effect is obtained from the
estimated medium-scale model in Section 3 by varying the price flexibility parameter
while holding all other parameters at their posterior means. Price flexibility is given
by 1 less the Calvo parameter. The y-axis of all panels is normalized to 1 for
the posterior means. Vertical lines display the posterior means (solid lines) and
90% error bands (dashed lines). Equal-weighted welfare shows an equal-weighted,
negatively signed composite of inflation and the output gap.

33



Figure 3: Distribution of Model Estimated Effect of Increased Price Flexibility on Derivatives of Key Ag-
gregates

10 20 30 40 50 60 70

0

500

1000

1500

2000

2500

(a) Distribution of Derivative of Output
Volatility

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

500

1000

1500

2000

2500

3000

3500

(b) Distribution of Derivative of Inflation
Volatility

10 20 30 40 50 60

0

500

1000

1500

2000

2500

(c) Distribution of Derivative of Output Gap
Volatility

-35 -30 -25 -20 -15 -10 -5

0

500

1000

1500

2000

2500

(d) Distribution of Derivative of Welfare

Note: The figure illustrates the distribution of the effect of price flexibility on the
derivative of the volatility of output, inflation, the output gap and equal-weighted
welfare. The distribution is obtained from 10,000 draws of the Bayesian estimation
of the medium-scale model in Section 3 and by varying the price flexibility param-
eter while holding all other parameters at their draws. Equal-weighted welfare is
computed as an equal-weighted, negatively signed composite of inflation and the
output gap.
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Figure 4: Model Estimated Effect of Systematic Response to Inflation on Derivatives of Key Aggregates with
Respect to Price Flexibility
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(a) Effect on Derivative of Output Volatility
with Respect to Price Flexibility
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(b) Effect on Derivative of Inflation Volatility
with Respect to Price Flexibility
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(c) Effect on Derivative of Output Gap
Volatility with Respect to Price Flexibility
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(d) Effect on Derivative of Welfare with Re-
spect to Price Flexibility

Note: The figure illustrates the effect of the systematic response to inflation in the
interest-rate rule on the volatility of output, inflation, the output gap and equal-
weighted welfare. The effect is obtained from the estimated medium-scale model
in Section 3 as the numerical derivative of output volatility with respect to price
flexibility as we vary the parameter φπ while holding all other parameters at their
posterior means. Equal-weighted welfare is computed as an equal-weighted, nega-
tively signed composite of inflation and the output gap.
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Figure 5: Effect of Importance of Shocks on Model-Estimated Derivative of Output Volatility with Respect
to Price Flexibility
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(g) Investment-Specific Shock

Note: The figure illustrates the effect of increasing the importance of shocks on the model-estimated
derivative of output volatility. The effect is obtained from the estimated medium-scale model in Section 3
as the numerical derivative of output volatility with respect to price flexibility as we increase the volatility
of one shock at a time while holding all other parameters, in particular the volatility of all other shocks,
at their posterior means. Vertical lines display the ratio of posterior means of the volatility of the shock
considered and all shocks (solid lines), and 90% error bands (dashed lines).
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Figure 6: Effect of Importance of Shocks on Model-Estimated Derivative of Equal-Weighted Welfare with
Respect to Price Flexibility

0 0.01 0.02 0.03 0.04 0.05

-14.6

-14.4

-14.2

-14

-13.8

-13.6

-13.4

-13.2

-13

(a) Productivity Shock

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

(b) Price Markup Shock

0.4 0.5 0.6 0.7 0.8 0.9 1

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

(c) Wage Markup Shock

0 0.01 0.02 0.03 0.04 0.05 0.06

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

(d) Risk-Premium Shock

0 0.01 0.02 0.03 0.04 0.05

-14.36

-14.34

-14.32

-14.3

-14.28

-14.26

-14.24

-14.22

-14.2

-14.18

-14.16

(e) Government-Spending Shock

0 0.01 0.02 0.03 0.04 0.05

-14.32

-14.3

-14.28

-14.26

-14.24

-14.22

-14.2

-14.18

-14.16

-14.14

(f) Monetary-Policy Shock

0 0.005 0.01 0.015 0.02 0.025 0.03

-16

-15.5

-15

-14.5

-14

-13.5

-13

(g) Investment-Specific Shock

Note: The figure illustrates the effect of increasing the importance of shocks on the model-estimated
derivative of equal-weighted welfare. The effect is obtained from the estimated medium-scale model
in Section 3 as the numerical derivative of equal-weighted welfare with respect to price flexibility as we
increase the volatility of one shock at a time while holding all other parameters, in particular the volatility
of all other shocks, at their posterior means. Equal-weighted welfare shows an equal-weighted, negatively
signed composite of inflation and the output gap. Vertical lines display the ratio of posterior means of
the volatility of the shock considered and all shocks (solid lines), and 90% error bands (dashed lines).
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Figure 7: Sticky Information/Sticky Price Model: Preference and Technology Shocks
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(b) Technology Shock

Note: The figure illustrates the effect of increasing either the flexibility of information or price flexibility
on the volatility of output, both in a non-responsive or responsive case of monetary policy. The effect is
obtained from the model in Section 4 for both preference and technology shocks.
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Figure 8: Welfare in the Sticky Information Model: Preference and Technology Shocks
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(b) Technology Shock

Note: The figure illustrates the effect of increasing either the flexibility of information or price flexibility
on the volatility of output, both in a non-responsive or responsive case of monetary policy. The effect is
obtained from the model in Section 4 for both preference and technology shocks. Welfare represents the
usual approximation to household utility.
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Figure 9: Welfare in the Sticky Information Model: Markup Shock
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Note: The figure illustrates the effect of increasing
either the flexibility of information or price flexi-
bility on the volatility of output, both in a non-
responsive or responsive case of monetary policy.
The effect is obtained from the model in Section
4 for both markup shocks. Welfare represents the
usual approximation to household utility.
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NOT FOR PUBLICATION

Appendix A. Proofs of Lemmas and Propositions in Section 2

In the following, to keep clutter to a minimum, we only keep track of At and ψt since ηt

shows up in the same way as σ−1(ψt−Etψt+1) and µt and τwt as At. Then, under endogenous615

nominal demand and Taylor rule, the following equations hold:

Ŷt = EtŶt+1 − σ(̂ıt − Etπt+1) + ψt − Etψt+1

πt = κŶt − κγAAt + βEtπt+1

ît = φππt + φyŶt + ηt

where demand and technology shocks evolve first-order auto-regressively as ψt = ρψψt−1 +

εψt and At = ρAAt−1 + εψt , and γA = 1+φ
σ−1+φ

.

Appendix A.1. Welfare - Lemma 1 and Proposition 1

First, only consider demand shocks ψt. The system has a solution of the following form:620

Yt = Yψψt, πt = πψψt and it = iψψt which implies that EtYt+1 = Yψρψψt and Etπt+1 =

πψρψψt.

Matching coefficients yields the following expressions:

Yψ =

[
σ(1− βρψ) (1− ρψ)

(1− ρψ + σφy)(1− βρψ) + κσ (φπ − ρψ)

]
πψ =

[
κσ (1− ρψ)

(1− ρψ + σφy)(1− βρψ) + κσ (φπ − ρψ)

]
This implies the following expression for the variance of output and inflation:

var(Ŷt/ψt) =

(
σ(1− βρψ)(1− ρψ)

(1− ρψ + σφy)(1− βρψ) + σκ[φπ − ρψ]

)2

var(ψt)

var(πt/ψt) =

(
κσ (1− ρψ)

(1− ρψ + σφy)(1− βρψ) + κσ (φπ − ρψ)

)2

var(ψt)
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Then, the derivative of the variance of output with respect to κ is:

∂V AR(Ŷt/ψt)

∂k
= −2σ2 σ(φπ − ρψ)(1− βρψ)2(1− ρψ)2

((1− ρψ + σφy)(1− βρψ) + σκ[φπ − ρψ])3
var(ψt)

If (φπ − ρψ) > 0, then this derivative is always negative. The sign of the derivative flips iff

(φπ − ρψ) < 0. Note that the denominator is always positive which follows from the bounds

implied by the determinacy condition.625

Now, only consider technology shocks At. The system has a solution of the following

form: Yt = YAAt, πt = πAAt and it = iAAt which implies that EtYt+1 = YAρAAt and

Etπt+1 = πAρAAt.Matching coefficients yields the following expressions:

YA =
κσ[φπ − ρA]

[(1− ρA + σφy)(1− βρA) + κσ[φπ − ρA]]
γA

πA =
κγA(1− ρA + σφy)

[(1− ρA + σφy)(1− βρA) + κσ(φπ − ρA]]
γA

This implies the following expression for the variance of output and inflation:

var(Ŷt/At) =

(
κσγA[φπ − ρA]

[(1− ρA + σφy)(1− βρA) + κσ[φπ − ρA]]
γA

)2

var(At)

var(πt/At) =

(
−κσγA(1− ρA + σφy)

[(1− ρA + σφy)(1− βρA) + κσ(φπ − ρA]]
γA

)2

var(At)

Then, the derivative of the variance of output with respect to κ is:

∂var(Yt)

∂κ
= 2YA

∂YA
∂κ

= 2γA

[
κσ (φπ − ρA)

(1− ρA + σφy)(1− βρA) + κσ (φπ − ρA)

]
γA

[
σ (φπ − ρA) (1− βρA)(1− ρA + σφy)

(1− ρA + σφy)(1− βρA) + κσ (φπ − ρA)2

]
> 0

since the denominator is always positive which follows from the bounds implied by the

determinacy condition.

Next, notice that the shock ηt appears exactly in the same way as ψt−Etψt+1. Hence, the

derivative of output has the same sign with respect to κ, depending on φη−ρη : ∂var(Yt/ηt)
∂κ

< 0
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if φη−ρη < 0 and ∂var(Yt/ηt)
∂κ

> 0 if φη−ρη > 0. The coefficients in the case of an idiosyncratic

monetary policy shock ηt are:

Yη =
−σ(1− βρη)

1− ρη + σφy + σκ(φπ − ρη)

πη =
κ

1− βρη
−σ(1− βρη)

1− ρη + σφy + σκ(φπ − ρη)

Finally, consider a markup shock µ̂t – shocks to labor taxes τ̂wt have isomorphic deriva-

tions. First, note that we have Y n
t = Y n

t − Y e
t = − 1

σ−1+φ
µ̂t. Then, applying the method of

undetermined coefficients in a setup analogous to the above yields the following coefficients:

Yµ = −
(

1

σ−1 + φ

)[
κσ
(
φπ − ρµ

)
(1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ)

]

πµ = − κ

(1− βρµ)

(
1

σ−1 + φ

)[
− (1− βρµ) (1− ρµ + σφy)

(1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ)

]
This directly implies that the variance of output is

var (Yt) =

[(
1

σ−1 + φ

)[
κσ
(
φπ − ρµ

)
(1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ)

]]2

var(µt)

Taking derivatives of the variance of output with respect to kappa yields:

∂var(Yt)

∂κ
= 2Yµ

∂Yµ
∂κ

= 2

(
1

σ−1 + φ

)[
κσ
(
φπ − ρµ

)
(1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ)

]
(

1

σ−1 + φ

)
(1− ρµ + σφy)(1− βρµ)σ(φπ − ρµ)

((1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ))2

= 2
(1− ρµ + σφy)(1− βρµ)

κ ((1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ))
var (Yt)

> 0

Note that the denominator is always positive which follows from the bounds implied by the

determinacy condition.
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Appendix A.2. Welfare - Lemma 2 and Proposition 2630

For the technology shock, first note the for Y e
t = 1+φ

σ−1+φ
Ât, we have that

var (Yt − Y e
t ) =

[(
1 + φ

σ−1 + φ

)[
− (1− βρA) (1− ρA + σφy)

(1− ρA + σφy)(1− βρA) + κσ (φπ − ρA)

]]2

Second, we take derivatives of the weighted variance term:

∂ θ
κ
var(πt)

∂κ
= −θ 1

κ2
var(π) + θ

1

κ

∂var(πt)

∂κ

= θ

[
1

(1− βρA)

]2

var (Yt − Y e
t )

(
(1− ρA + σφY )(1− βρA)− κσ (φπ − ρA)

(1− ρA + σφy)(1− βρA) + κσ (φπ − ρA)

)
> 0 if φπ − ρA < ΓA =

(1− ρA + σφy)(1− βρA)

κσ

< 0 if φπ − ρA > ΓA =
(1− ρA + σφy)(1− βρA)

κσ

For the demand shock, Y e
t = Yt. Since var(πt) = κ2

(1−βρψ)2
var(Yt), some algebra directly

implies that

∂ θ
κ
var(πt)

∂κ
= −θ 1

κ2
var(πt) + θ

1

κ

∂var(πt)

∂κ

=
θ

κ2
var (Yt)

[
κ

(1− βρψ)

]2 [
−1 + 2

(1− ρψ + σφy) (1− βρψ)

(1− ρψ + σφy) (1− βρψ) + σκ (φπ − ρψ)

]
=

θ

κ2
var (Yt)

[
κ

(1− βρψ)

]2(
(1− ρψ + σφy)(1− βρψ)− κσ(φπ − ρψ)

(1− ρψ + σφy)(1− βρψ) + κσ(φπ − ρψ)

)
> 0 iff φπ − ρψ < Γψ =

(1− ρψ + σφy)(1− βρψ)

κσ

< 0 iff φπ − ρψ > Γψ =
(1− ρψ + σφy)(1− βρψ)

κσ

For the markup shock, some algebra directly implies that

∂ θ
κ
var(πt)

∂κ
=

θ

κ2

[
(1− ρµ + σφy)

σ
(
φπ − ρµ

) ]2

var(Yt)

(
(1− ρµ + σφy)(1− βρµ)− κσ(φπ − ρµ)

(1− ρµ + σφy)(1− βρµ) + κσ(φπ − ρµ)

)
< 0 iff φπ − ρµ > Γµ =

(1− ρµ + σφy)(1− βρµ)

κσ

> 0 if φπ − ρµ < Γµ =
(1− ρµ + σφy)(1− βρµ)

κσ

Noting that for the demand shock ψt it holds true that Y e
t = Yt, we take derivatives of
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W with respect to κ :

∂W

∂κ
= −

(
φ+ σ−1

) [∂ θ
κ
var (πt)

∂κ
+
∂var (Yt)

∂κ

]

=
(φ+ σ−1) var(Yt)

(1− ρψ + σφy)(1− βρψ) + κσ(φπ − ρψ)

(− θ

(1− βρψ)2 ((1− ρψ + σφy)(1− βρψ)− κσ(φπ − ρψ)) + 2σ(φπ − ρψ))

< 0 iff (φπ − ρψ) < Λψ =
θ(1− βρψ)(1− ρψ + σφy)

σ(2(1− βρψ)2 + κθ)

> 0 iff (φπ − ρψ) > Λψ =
θ(1− βρψ)(1− ρψ + σφy)

σ(2(1− βρψ)2 + κθ)

For the markup shock, first consider the derivative of the weighted inflation term with respect

to κ:

∂ θ
κ
var(πt)

∂κ
= −θ 1

κ2
var(π) + θ

1

κ

∂var(πt)

∂κ

=
θ

κ2

[
(1− ρµ + σφy)

σ
(
φπ − ρµ

) ]2

var(Yt)

(
(1− ρµ + σφy)(1− βρµ)− κσ(φπ − ρµ)

(1− ρµ + σφy)(1− βρµ) + κσ(φπ − ρµ)

)
< 0 iff φπ − ρµ > Γµ =

(1− ρµ + σφy)(1− βρµ)

κσ

> 0 iff φπ − ρµ < Γµ =
(1− ρµ + σφy)(1− βρµ)

κσ

Second, since Y e
t = 0, taking derivatives of welfare with respect to κ yields after some algebra:

∂W

∂κ
= −

(
φ+ σ−1

) 1

κ ((1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ))
var (Yt)

(
θ

κ

[
(1− ρµ + σφy)

σ
(
φπ − ρµ

) ]2

(1− ρµ + σφy)(1− βρµ)− κσ(φπ − ρµ) + 2(1− ρµ + σφy)(1− βρµ))

< 0 if
θ

κ

[
(1− ρµ + σφy)

σ
(
φπ − ρµ

) ]2

(1− ρµ + σφy)(1− βρµ)

−κσ(φπ − ρµ) + 2(1− ρµ + σφy)(1− βρµ) > 0

> 0 if
θ

κ

[
(1− ρµ + σφy)

σ
(
φπ − ρµ

) ]2

(1− ρµ + σφy)(1− βρµ)

− κσ(φπ − ρµ) + 2(1− ρµ + σφy)(1− βρµ) < 0
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A sufficient but not necessary condition for ∂W
∂κ

< 0 is (φπ − ρµ) < 0.

For technology shocks, Y e
t = 1+φ

σ−1+φ
Ât. This implies that

var (Yt − Y e
t ) =

[(
1 + φ

σ−1 + φ

)[
− (1− βρA) (1− ρA + σφy)

(1− ρA + σφy)(1− βρA) + κσ (φπ − ρA)

]]2

so that

∂var(Yt − Y e
t )

∂κ
= −2

(
1 + φ

σ−1 + φ

)2
σ(φπ − ρA)((1− βρA) (1− ρA + σφy))

2

((1− ρA + σφy)(1− βρA) + κσ (φπ − ρA))3

= −2
σ(φπ − ρA)

((1− ρA + σφy)(1− βρA) + κσ (φπ − ρA))
var(Yt − Y e

t )

> 0 iff (φπ − ρA) < 0

< 0 iff (φπ − ρA) > 0

We combine results from above, which directly yields after some algebra:

∂W

∂κ
= −

(
φ+ σ−1

) [∂ θ
κ
var (πt)

∂κ
+
∂var (Yt − Y e

t )

∂κ

]
(− θ

(1− βρA)2 ((1− ρA + σφy)(1− βρA)− κσ(φπ − ρA)) + 2 σ(φπ − ρA))

< 0 if (φπ − ρA) < ΛA =
θ(1− βρA)(1− ρA + σφY )

σ(2(1− βρA)2 + κθ)

> 0 if (φπ − ρA) > ΛA =
θ(1− βρA)(1− ρA + σφY )

σ(2(1− βρA)2 + κθ)

Appendix B. Smets-Wouters Model

We refer the reader to the original Smets and Wouters (2007) paper for a detailed de-635

scription of the model. Here we present the log-linearized equilibrium conditions in line

with the notation in their paper (for the expressions for the reduced-form parameters below

as a function of the structural parameters, please see Smets and Wouters (2007) and its

appendix).

ĉt = c1ĉt−1 + (1− c1)Etĉt+1 − c2{r̂t − Etπ̂t+1 + εbt} − c3 (Etn̂t+1 − n̂t)
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ı̂t = i1ı̂t−1 + (1− i1)Etı̂t+1 + i2q̂t + εqt

q̂t = −
(
r̂t − Etπ̂t+1 + εbt

)
+ q1Etr̂

k
t+1 + (1− q1)Etq̂t+1

ŷt = cy ĉt + iy ı̂t + ĝt + vyv̂t

π̂t − ιpπ̂t−1 = β̄γ̄ (Etπ̂t+1 − ιpπ̂t)− π1

(
−
(
αr̂kt + (1− α)ŵt − at

)
− µ̂pt

)

π̂wt −ιwπ̂t−1 = β̄γ̄
(
Etπ̂

w
t+1 − ιwπ̂t

)
−λw

(
ŵt −

((
1

1− h/γ̄

)
ĉt −

(
h/γ̄

1− h/γ̄

)
ĉt−1 + σln̂t

)
− µ̂wt

)

̂̄kt = k1
̂̄kt−1 + (1− k1) ı̂t + k2ε

q
t

k̂t = v̂t + ̂̄kt−1

v̂t =

(
1

(ψ/1− ψ)

)
r̂kt

k̂t = ŵt − r̂kt + n̂t

rt = ρrt−1 + (1− ρ)
(
rππt + ryŷgapt

)
+ r∆y∆̂ygapt + εrt

Appendix C. Solution and Estimation Method640

We use a Bayesian framework for estimation. The first-order approximation to the equi-

librium conditions of the model can be written as
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Γ0 (θ) st = Γ1 (θ) st−1 + Γε(θ)εt + Γη(θ)πt

where st is a vector of model variables and εt is a vector of shocks to the exogenous processes.

πt is a vector of rational expectations forecast errors, which implies Et−1πt = 0 for all t, and

θ contains the structural model parameters. The solution to this system is given by645

st = Ω1(θ)st−1 + Ωε(θ)εt.

which can be obtained using standard methods in the literature. Finally, the model variables

are related to the observables by the measurement equation

yt = Bst

where yt is the vector of observables.

Let Y = {y}Tt=1 be the data. In a Bayesian framework, the likelihood function L(Y | θ) is

combined with a prior density p(θ) to yield the posterior density650

p(θ | Y ) ∝ p(θ)L(Y | θ).

Assuming Gaussian shocks, it is straightforward to evaluate the likelihood function using the

Kalman filter. A numerical optimization routine is used to maximize p(θ | Y ) and find the

posterior mode. Then, we can generate draws from p(θ | Y ) using the Metropolis-Hastings

algorithm where we use a Gaussian proposal density in the algorithm, using an inverse of a

scaled Hessian computed at the posterior mode as the covariance matrix.655

The Metropolis-Hastings algorithm works as follows. Let the posterior mode computed

from the numerical optimization routine be θ̃. Let the inverse of the Hessian computed at

θ̃ be Σ̃.

(a) Choose a starting value θ0. Then use a loop over the following steps (b)-(d).

(b) For d = 1, ..., D, draw a θ∗ from the proposal distribution N(θd−1, cΣ̃).660

(c) Accept θ∗, that is θd = θ∗, with probability min{1, r(θd−1, θ∗)}. Reject θ∗, that is
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θd = θd−1, otherwise.

(d) r(θd−1, θ∗) is given by:

r(θd−1, θ∗) =
p(θ∗)L(Y | θ∗)

p(θd−1)L(Y | θd−1)

The scale parameter c is chosen to lead to acceptance rates of around 30%.

To settle on a model specification, we do Bayesian model comparison using the marginal

data densities of the models. In comparing models A and B we are interested in the relative665

posterior probabilities of the models given the data. That is, p(A|Y )
p(B|Y )

= p(A) p(Y |A)
p(B) p(Y |B)

where

p(A) and p(B) are the prior probabilities of the models A and B. Since we do not specifying

different prior probabilities over the models, we just compare the marginal data densities

given by p(Y | A) and p(Y | B). The marginal data density of a model is given by

p(Y ) =

∫
p(θ)L(Y | θ) dθ.

Note that this measure penalizes overparameterized models.670

The marginal data density is approximated by the Geweke (1998) modified harmonic-

mean estimator. First note that we can write

1

p(Y )
=

∫
f(θ)dθ

p(θ)L(Y | θ)
dθ

where f is a probability density function such that
∫
f(θ)dθ = 1. Then, we can use the

following estimator

p̂(Y ) =

[
1

D

D∑
d=1

f(θd)

p(θd)L(Y | θd)

]−1

where d denotes the posterior draws obtained using the Metropolis-Hastings algorithm. For

f , Geweke (1998) proposed a truncated multivariate normal distribution.
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Table C.2: Prior Distribution of Structural Parameters

Parameters Domain Density Prior Mean Prior Stdev

ϕ R Normal 4.00 1.50
σc R Normal 1.50 0.37
h [0,1) Beta 0.70 0.10
ξw [0,1) Beta 0.50 0.10
σl R Normal 2.00 0.75
ξp [0,1) Beta 0.50 0.10
ιw [0,1) Beta 0.50 0.15
ιp [0,1) Beta 0.50 0.15
ψ [0,1) Beta 0.50 0.15
Φ R Normal 1.25 0.12
rπ R Normal 1.50 0.25
ρ [0,1) Beta 0.75 0.10
ry R Normal 0.12 0.05
r∆y R Normal 0.12 0.05
π R+ Gamma 0.62 0.10

100(β−1 − 1) R+ Gamma 0.25 0.10

l R Normal 0.00 2.00
γ R Normal 0.40 0.10
α R Normal 0.30 0.05
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Table C.3: Prior Distribution of Shock Processes

Parameters Domain Density Prior Mean Prior Stdev

ρa [0,1) Beta 0.5 0.2
ρb [0,1) Beta 0.5 0.2
ρg [0,1) Beta 0.5 0.2
ρI [0,1) Beta 0.5 0.2
ρr [0,1) Beta 0.5 0.2
ρp [0,1) Beta 0.5 0.2
ρw [0,1) Beta 0.5 0.2
ρga [0,1) Beta 0.5 0.2
µp [0,1) Beta 0.5 0.2
µw [0,1) Beta 0.5 0.2
σa R+ InvG 0.10 0.5
σ

b
R+ InvG 0.10 2

σg R+ InvG 0.10 2
σI R+ InvG 0.10 2
σr R+ InvG 0.10 2
σp R+ InvG 4.00 4
σw R+ InvG 5.00 5
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Table C.4: Posterior Estimates of Structural Parameters

Parameters Prior Posterior Probability Interval
Mean Mean 90%

ϕ 4.00 5.4878 [3.8117 7.1473]
σc 1.50 1.3444 [1.1319 1.5553]
h 0.70 0.7173 [0.6469 0.7892]
ξw 0.50 0.6184 [0.5182 0.7220]
σl 2.00 1.4825 [0.6539 2.2722]
ξp 0.50 0.6124 [0.5396 0.6833]
ιw 0.50 0.6143 [0.4158 0.8182]
ψ 0.50 0.5712 [0.3912 0.7492]
Φ 1.25 1.6149 [1.4869 1.7426]
rπ 1.50 2.0701 [1.7830 2.3554]
ρ 0.75 0.7936 [0.7516 0.8367]
ry .125 0.0843 [0.0474 0.1209]
r∆y .125 0.2169 [0.1699 0.2638]
π .625 0.8310 [0.6115 0.9660]

100(β−1 − 1) 0.25 0.1690 [0.6580 1.0013]

l 0.00 -0.0723 [-1.8855 1.7663]
γ 0.40 0.4276 [0.4033 0.4520]
α 0.30 0.1914 [0.1620 0.2203]

Table C.5: Posterior Estimates of Shock Processes

Parameters Prior Posterior Probability Interval
Mean Mean 90%

ρa 0.5 0.9563 [0.9376 0.9754]
ρb 0.5 0.2041 [0.0651 0.3349]
ρg 0.5 0.9751 [0.9614 0.9890]
ρI 0.5 0.7149 [0.6202 0.8130]
ρr 0.5 0.1730 [0.0592 0.2817]
ρp 0.5 0.9050 [0.8441 0.9705]
ρw 0.5 0.9733 [0.9570 0.9899]
ρga 0.5 0.5196 [0.3714 0.6666]
µp 0.5 0.5587 [0.3699 0.7464]
µw 0.5 0.8030 [0.7021 0.9055]
‘σa 0.10 0.4568 [0.4107 0.5025]
σ

b
0.10 0.2434 [0.2045 0.2821]

σg 0.10 0.5285 [0.4773 0.5782]
σI 0.10 0.4520 [0.3704 0.5322]
σr 0.10 0.2494 [0.2233 0.2746]
σp 4.00 3.8069 [2.0399 5.5395]
σw 5.00 14.5539 [5.6942 23.5754]
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Appendix D. Extensions: Monetary policy rules and optimal policy

Optimal policy under discretion can be characterized easily here since there are no state

variables. The problem is just a static one of minimizing

Lt =
(
φ+ σ−1

) [ θ
κ
π2
t + (Yt − Y e

t )2

]
subject to

πt = κYt − κY n
t + βEtπt+1.

Lets reformulate it as minimizing

Lt =

[
θ

κ
π2
t + (Yt − Y e

t )2

]
subject to

πt = κ (Yt − Y e
t ) + κ (Y e

t − Y n
t ) + βEtπt+1.

The FOC of this problem leads to the simple, well-known targeting rule

θπt + (Yt − Y e
t ) = 0.

Now we have to work with two equations only to pin down the solution of the model

θπt + (Yt − Y e
t ) = 0

πt = κ (Yt − Y e
t ) + κ (Y e

t − Y n
t ) + βEtπt+1

Replace the first into the second

πt = −κθπt + κ (Y e
t − Y n

t ) + βEtπt+1

Now replace for

Y e
t − Y n

t =
1

σ−1 + φ
µ̂t

Then get

πt = −κθπt + κ
1

σ−1 + φ
µ̂t + βEtπt+1
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This gives the following first-order forward looking difference equation in πt

(1 + κθ)πt = βEtπt+1 +
κ

σ−1 + φ
µ̂t

Guess

πt = πµµ̂t

which gives

Etπt+1 = πµρµµ̂t

Replace above and match coefficients to get

πµ =
κ

(σ−1 + φ) (1 + κθ − βρµ)

Thus,

πt =
1

(σ−1 + φ)

(
κ

(1 + κθ − βρµ)

)
µ̂t.

This implies that

(Yt − Y e
t ) = −θπt = − θ

(σ−1 + φ)

(
κ

(1 + κθ − βρµ)

)
µ̂t.

We first start with establishing what happens to the variance of output when prices

become more flexible. First note that two cases are particularly easy. For demand shocks,675

output does not respond at all as long as the ZLB does not bind. That is, in that case, we

have

Yt = 0.

So variance of output does not depend on price stickiness.

For technology shocks, output responds one-to-one since we have

πt = (Yt − Y e
t ) = 0.

This means

Yt = Y e
t =

1 + φ

σ−1 + φ
Ât.
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Again, variance of output does not depend on price stickiness.

For markup shocks, we have as the solution for output (since Y e
t = 0)

Yt = − θ

(σ−1 + φ)

(
κ

(1 + κθ − βρµ)

)
µ̂t.

var (Yt) = θ2

(
κ

(1 + κθ − βρµ)

)2

.

Then
∂var (Yt)

∂κ
=

θ2 (1− βρµ) 2κ

(1 + κθ − βρµ)3 > 0.

Now, lets look at the effects of increased price flexibility on welfare. As is well-known with680

technology shocks only, both πt and (Yt − Y e
t ) can be put to zero and one gets to first-best.

Thus, there is no interesting relationship between price flexibility and welfare. With mark-up

shocks, there is a trade-off as can be seen above.

For mark-up shocks, we want to evaluate

W = −
(
φ+ σ−1

) [ θ
κ
var (πt) + var (Yt − Y e

t )

]
We have as the targeting rule

θπt + (Yt − Y e
t ) = 0

which gives

θ2var (πt) = var (Yt − Y e
t ) .

Then, welfare is given by

W = −
(
φ+ σ−1

)
θ

[(
1

κ
+ θ

)
var (πt)

]
.

We have as the solution of the model

πt =
1

(σ−1 + φ)

(
κ

(1 + κθ − βρµ)

)
µ̂t

or

var (πt) =

[
1

(σ−1 + φ)

(
κ

(1 + κθ − βρµ)

)]2

.
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We can then establish how variance of inflation depends on price flexibility.

∂var(πt)

∂κ
=

(1− βρµ) 2κ

(1 + κθ − βρµ)3 > 0.

Then, we can establish how the welfare relevant variance of inflation depends on price flexi-

bility
∂ θ
κ
var (πt)

∂κ
=

1− κθ − βρµ
(1 + κθ − βρµ)3 > 0 if 1− κθ > βρµ.

Thus, while with a low ρµ this variance of welfare relevant inflation term is increasing with

greater price flexibility, it can decrease for a high enough ρµ. Third, we can consider how

the variance of welfare relevant output gap depends on increased price flexibility (this is

basically the same as the variance of output since Y e
t = 0)

∂var (Yt − Y e
t )

∂κ
= θ2 (1− βρµ) 2κ

(1 + κθ − βρµ)3 > 0.

Now, lets finally move to welfare. Replace the expression for inflation above, along with

the relationship between to get πt and (Yt − Y e
t ) to get

W = − 1

(σ−1 + φ)
θ

[
κ (1 + θκ)

(1 + κθ − βρµ)2

]

For simplicity, first consider ρµ = 0. Then, we have

W = − 1

(σ−1 + φ)
θ

[
κ

(1 + κθ)

]
.

It is easy to see that in such a case
∂W

∂κ
< 0.

When we consider a general ρµ however, note that this is not always the case. In particular,

for a high enough ρµ, it can be the case that increased price flexibility leads to higher welfare.

Generally,
∂W

∂κ
= −1 + κθ − βρµ (1 + 2κθ)

(1 + κθ − βρµ)3

The denominator is always positive, but the numerator can take either positive or negative

value. Thus,
∂W

∂κ
< 0 if

1 + κθ

1 + 2κθ
> βρµ.
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There are two forces at work: the variance of the welfare relevant output gap is always

increasing in price flexibility, but the variance of the welfare relevant inflation can decrease685

with higher flexibility if ρµ is big enough.

We can also study optimal monetary policy under commitment, which means specifying a

fully state-contingent path at t = 0 for the endogenous variables to minimize the loss-function

subject to

πt = κYt − κY n
t + βEtπt+1.

Lets then define the Lagrangian

L =
1

2
E0

∞∑
t=0

βt
[
θ

κ
π2
t + (Yt − Y e

t )2

]
+ E0

∞∑
t=0

βtq1,t {πt − κ (Yt − Y e
t )− κ (Y e

t − Y n
t )− βEtπt+1.}

where {q1,t} is the sequence of Lagrange multiplier.690

First order conditions are given as:

∂πt : 0 =
θ

κ
πt + q1,t − q1,t−1

∂ (Yt − Y e
t ) : 0 = (Yt − Y e

t )− κq1,t

Consequently, the equilibrium time path of{
Ŷt, πt, q1,t

}∞
t=0

is characterized by the following 3 equations

πt = κ (Yt − Y e
t )− κ (Y e

t − Y n
t )− βEtπt+1

0 =
θ

κ
πt + q1,t − q1,t−1

0 = (Yt − Y e
t )− κq1,t

given exogenous processes and initial conditions. We assume that all the variables are in the

steady state initially: q−1 = 0.
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So assuming the “time-less perspective” we have as the “targeting rule”

θπt + (Yt − Y e
t )−

(
Yt−1 − Y e

t−1

)
= 0.
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Appendix E. Extensions: Zero lower bound

When ψt becomes negative enough, the ZLB binds. We assume, like in Eggertsson and

Woodford (2003) and Eggertsson (2008) that the shock to ψt = ψS < 0 in period 0 and695

which reverts back to steady state ψS = ψ̄ > 0 with a fixed probability 1 − µ every period

thereafter. Under discretion, out of the trap, optimal policy is able to achieve Yt−Y e
t , πt = 0.

At the ZLB, we have it = β − 1.

First, consider the Phillips curve (no shock to Y n
t now) where we denote by S the time

in the trap:

πS = κYS + βµπS.

Next, consider the IS equation (no shock to Y n
t now)

YS = µYS + σµπS + (1− µ)ψS

Some algebra directly implies that

YS =
(1− βµ)

(1− µ) (1− βµ)− κσµ
ψS

and

πS =
κ

(1− µ) (1− βµ)− κσµ
ψS

Note that here Y e
t = 0. Consider each derivative of the welfare function with respect to κ.

First, some algebra directly implies that

∂var(YS)

∂κ
=

2σµ

(1− µ) (1− βµ)− κσµ
var (YS) > 0

Next, since πS = κ
1−βµYS, we have that

∂var(πS)

∂κ
= 2

(
κ

1− βµ

)
1

1− βµ
var (YS) +

(
κ

1− βµ

)2
∂var(YS)

∂κ

=

[
(1− µ) (1− βµ)

[(1− µ) (1− βµ)− κσµ]

]
2κ

(1− βµ)2var (YS) > 0
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This implies that the derivative of the weighted variance of inflation is

∂ θ
κ
var (πS)

∂κ
= −var (πS)

θ

κ2
+
θ

κ

∂var(πS)

∂κ

=

[
(1− µ) (1− βµ) + κσµ

(1− µ) (1− βµ)− κσµ

]
θ

(1− βµ)2var (YS) > 0

Therefore, the derivative of welfare with respect to κ is negative:

∂W

∂κ
< 0.

since all loss components have a positive derivative with respect to κ and are multiplied by700

−1.

Finally, when studying optimal monetary policy, we take into account the zero lower bound

on interest rates explicitly. This happens when rnt becomes negative enough so that the ZLB

binds. We assume, like in Eggertsson and Woodford (2003) and Eggertsson (2008) that the

shock to rnt = rnS < 0 in period 0 and which reverts back to steady state rS = r̄ > 0 with a705

fixed probability 1− µ every period thereafter.

Under discretion, out of the trap, optimal policy is able to achieve Yt − Y e
t , πt = 0. At

ZLB, we have it = β − 1.We have to consider two cases: when the economy is in a ZLB

situation and when it is out of it. Out of the trap, as discussed above, in this simple model

under discretion, both Yt−Y e
t and πt are equal to zero when the shock that hits the economy710

is a shock to rnt such as a preference shock. In the trap, it = β − 1.

Now, consider the Phillips curve (no Y n
t shock now)

πt = κYt + βEtπt+1

which we rewrite as

πS = κYS + βµπS.

Next, consider the IS equation (no Y n
t shock now)

Yt = EtYt+1 − σ(it − Etπt+1 − rnt )
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which we rewrite as

YS = µYS + σµπS + σrnS

Lets manipulate these two expressions

πS =

(
κ

1− βµ

)
YS

πS =
(1− µ)YS − σrnS

σµ

and combine them to get (
κ

1− βµ

)
YS =

(1− µ)YS − σrnS
σµ

or [(
1− µ
σµ

)
−
(

κ

1− βµ

)]
YS =

1

µ
rnS

[
(1− µ) (1− βµ)− κσµ

σµ (1− βµ)

]
YS =

1

µ
rnS

YS =
σ (1− βµ)

(1− µ) (1− βµ)− κσµ
rnS

and then

πS =

(
κ

1− βµ

)
YS

πS =

(
κ

1− βµ

)
σ (1− βµ)

(1− µ) (1− βµ)− κσµ
rnS

πS =
σκ

(1− µ) (1− βµ)− κσµ
rnS.

For welfare, we want to evaluate

W = −
(
φ+ σ−1

) [ θ
κ
var (πt) + var (Yt − Y e

t )

]
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which here is

W = −
(
φ+ σ−1

) [ θ
κ
var (πt) + var (Yt)

]
First, we have

var (πS) =

(
κ

1− βµ

)2

var (YS)

and

var (YS) =

[
σ (1− βµ)

(1− µ) (1− βµ)− κσµ

]2

so

W = −
(
φ+ σ−1

) [ θ
κ
var (πS) + var (YS)

]

W = −
(
φ+ σ−1

) [ θ
κ

(
κ

1− βµ

)2

var (YS) + var (YS)

]

W = −
(
φ+ σ−1

) [( θ
κ

(
κ

1− βµ

)2

+ 1

)
var (YS)

]

W = −
(
φ+ σ−1

) [( θκ

(1− βµ)2 + 1

)
var (YS)

]
.

Now

∂var(YS)

∂κ
= 2

[
σ (1− βµ)

(1− µ) (1− βµ)− κσµ

]
σ (1− βµ)

((1− µ) (1− βµ)− κσµ)2σµ > 0

which also gives
∂var(YS)

∂κ
=

2σµ

(1− µ) (1− βµ)− κσµ
var (YS) .

Next
∂var(πS)

∂κ
= 2

(
κ

1− βµ

)
1

1− βµ
var (YS) +

(
κ

1− βµ

)2
∂var(YS)

∂κ

∂var(πS)

∂κ
= 2

(
κ

1− βµ

)
1

1− βµ
var (YS) +

(
κ

1− βµ

)2
2σµ

(1− µ) (1− βµ)− κσµ
var (YS)

∂var(πS)

∂κ
=

[
1

κ
+

σµ

(1− µ) (1− βµ)− κσµ

]
2

(
κ

1− βµ

)2

var (YS)
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∂var(πS)

∂κ
=

[
(1− µ) (1− βµ)

[(1− µ) (1− βµ)− κσµ]

]
2κ

(1− βµ)2var (YS) > 0

Finally, the weighted variance of inflation term

∂ θ
κ
var (πS)

∂κ
= −var (πS)

θ

κ2
+
θ

κ

∂var(πS)

∂κ

∂ θ
κ
var (πS)

∂κ
= −

(
κ

1− βµ

)2

var (YS)
θ

κ2
+
θ

κ

[
(1− µ) (1− βµ)

[(1− µ) (1− βµ)− κσµ]

]
2κ

(1− βµ)2var (YS)

∂ θ
κ
var (πS)

∂κ
= − θ

(1− βµ)2var (YS) +

[
(1− µ) (1− βµ)

[(1− µ) (1− βµ)− κσµ]

]
2θ

(1− βµ)2var (YS)

∂ θ
κ
var (πS)

∂κ
=

[
−1 +

[
2 (1− µ) (1− βµ)

[(1− µ) (1− βµ)− κσµ]

]]
θ

(1− βµ)2var (YS)

∂ θ
κ
var (πS)

∂κ
=

[
(1− µ) (1− βµ) + κσµ

(1− µ) (1− βµ)− κσµ

]
θ

(1− βµ)2var (YS) > 0

So,
∂W

∂κ
< 0.

Appendix F. Wage and Price Flexibility

Appendix F.1. General model

Woodford (2003) presents a simple model with wage and price stickiness that can be

summarized under a Taylor rule as

Ŷt = EtŶt+1 − σ(̂ıt − Etπpt+1 − ret ) (F.1)

πpt = κp(Yt − Y n
t ) + ξp(ŵt − ŵnt ) + βEtπ

p
t+1 (F.2)
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πwt = κw(Yt − Y n
t )− ξw(ŵt − ŵnt ) + βEtπ

w
t+1 (F.3)

ı̂t = φππ
p
t + φyŶt (F.4)

ŵt = ŵt−1 + πwt − π
p
t (F.5)

where we have that ŵnt = (1 + ωp)at − ωpŶ n
t and Ŷ n

t = 1+ω
σ−1+ω

at − 1
σ−1+ω

µ̂t + 1
σ−1+ω

τ̂wt . Also,

the welfare- objective around the efficient steady state is given by715

Lt = λp(π
p
t )

2 + λw(πwt )2 + λx(Ŷt − Ŷ e
t )2.

Here, we have ξw = (1−αw)(1−αwβ)
αw(1+νθw)

, ξp = (1−αp)(1−αpβ)

αp(1+ωpθp)
, κw = ξw (ωw + σ−1) , κp = ξpωp, κw =

(1−αw)(1−αwβ)
αw

(ωw+σ−1)
(1+νθw)

, κp = (1−αp)(1−αpβ)

αp

ωp
(1+ωpθp)

, λp =
θpξ
−1
p

θpξ
−1
p +θwφ

−1
h ξ−1

w
> 0, λw =

θwφ
−1
h ξ−1

w

θpξ
−1
p +θwφ

−1
h ξ−1

w
>

0, and λx = σ−1+ω
θpξ
−1
p +θwφ

−1
h ξ−1

w
> 0. Moreover, ν ≡ vhhh

vh
, φh ≡ f(h)

hf ′(h)
, ωw = νφh, and ω = ωw+ωp.

Assume the production function yt(i) = Atht(i)
γ to get φh = 1/γ, ωw = ν/γ, and

ωp = 1−γ
γ
.720

Appendix F.2. Simplified Approximate model

Next, we make the assumption that simplifies the model and leads to sharp insights. We

assume that κp = κw = κ. After some manipulation and using that ∆ŵt = πwt − πpt , we

obtain

∆wt = −(ξw + ξp)(wt − wnt ) + βEt∆wt+1

and the solution for wt can then be written as

wt = Γwwt−1 + Γnw
n
t

where Γw is the root less than 1 of the polynomial µ2 −
(
β+κ

(
1

ωw+σ−1 + 1
ωp

)
+1

)
β

µ + 1
β

= 0 and

Γn = Γw
1−βΓwρA

κ
(

1
ωw+σ−1 + 1

ωp

)
.

As our second result, in this simplified case, the rest of the model equations reduce to
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three equations as given by

πpt = κ(Yt − Y n
t ) + βEtπ

p
t+1 + κ

1

ωp
(wt − wnt )

Ŷt = EtŶt+1 − σ(it − Etπpt+1 − ret )

it = φππ
p
t + φyŶt

This then implies that our previous result on demand shocks will fully go through in this

case.725

For productivity shocks, it is tedious to analytically show how the variance of output

varies with κ. The solution of the model however can be shown in closed-form. For simplicity,

assume log-utility (σ = 1) and i.i.d. technology shocks (ρA = 0). Then,

Ŷt = YAat + Ywwt

where

YA =
κ
(

1 + 1
ωp

)
κ+ (φy+1)

φπ

;Yw = − κ (φπ − Γw)

ωp [κ (φπ − Γw)− (Γw − 1− φy) (1− βΓw)]
.

This together with

wt = Γwwt−1 + Γnw
n
t

and

wnt = at

completes the solution.
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Appendix F.3. Discretion

The objective function is given by the following:

Lt = λp(π
p
t )

2 + λw(πwt )2 + λx(Ŷt − Ŷ e
t )2

λp =
θpξ
−1
p

θpξ−1
p + θwφ

−1
h ξ−1

w

> 0, λw =
θwφ

−1
h ξ−1

w

θpξ−1
p + θwφ

−1
h ξ−1

w

> 0, λx =
σ−1 + ω

θpξ−1
p + θwφ

−1
h ξ−1

w

> 0

Y e
t =

1 + ω

σ−1 + ω
at

Given our specific assumptions, wt is an exogenous process and hence there are no endogenous

state variables in the model. This greatly simplifies things as the discretion problem just

reduces to a period by period minimization problem. Also, note that our assumptions

ξw = 1
ωw+σ−1κ, ξp = 1

ωp
κ and ∆ŵt = πwt −π

p
t and the assumption of log utility (for expository

reasons only) allow us to write the following Lagrangian after some manipulation:

Lt =
1

2

[
λp(π

p
t )

2 + λw(∆ŵt + πpt )
2 + λx(Ŷt − Ŷ e

t )2
]

+ q1,t

{
πpt − κ(Ŷt − Ŷ e

t )− βEtπpt+1 + κ
1

ωp
at − κ

1

ωp
wt

}
where the central bank will take expectation functions as given since there are no endogenous

state variables and we use the fact that the IS equation is not binding. This yields the

following FOCs:

∂L
∂πpt

= λpπ
p
t + λw (∆ŵt + πpt ) + q1,t = 0

∂L

∂
(
Ŷt − Ŷ e

t

) = λx(Ŷt − Ŷ e
t )− κq1,t = 0

with the exogenous processes

wt = Γwwt−1 +
βΓw

1− βΓwρA
κ

(
1

ωw + 1
+

1

ωp

)
at

Ŷ e
t = at

Now combine the two FOCs to get the targeting rule, which is our main result here

(λp + λw) πpt + λw∆ŵt +
λx
κ

(Ŷt − Ŷ e
t ) = 0.
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Assuming i.i.d. shock for simplicity, one can derive the solution of the model in closed

form:

πpt = πw1ŵt−1 + πwŵt + πAat

πw1 =

κ
(1+ω)

θwφ
−1
h (ωw + 1)(

1 +
κ(θpωp+θwφ

−1
h (ωw+1))

(1+ω)

)

πw =

 1(
1 +

κ(θpωp+θwφ
−1
h (ωw+1))

(1+ω)

)
− βΓw


β κ

(1+ω)
θwφ

−1
h (ωw + 1)(

1 +
κ(θpωp+θwφ

−1
h (ωw+1))

(1+ω)

) − κ

(1 + ω)
θwφ

−1
h (ωw + 1) + κ

1

ωp



πA =
1(

1 +
κ(θpωp+θwφ

−1
h (ωw+1))

(1+ω)

) [−κ 1

ωp

]

For the output gap, we have

(
θpωp + θwφ

−1
h (ωw + 1)

)
πpt + θwφ

−1
h (ωw + 1) ∆ŵt + (1 + ω) (Ŷt − Ŷ e

t ) = 0

which gives

(Ŷt − Ŷ e
t ) = −

(
θpωp + θwφ

−1
h (ωw + 1)

)
(1 + ω)

πpt −
θwφ

−1
h (ωw + 1)

(1 + ω)
(ŵt − ŵt−1)

and for output, since Ŷ e
t = at

Ŷt = −
(
θpωp + θwφ

−1
h (ωw + 1)

)
(1 + ω)

πpt −
θwφ

−1
h (ωw + 1)

(1 + ω)
(ŵt − ŵt−1) + at

Appendix F.4. Commitment

In the case of commitment, we have:

L =
1

2
E0

∞∑
t=0

βt
[
λp(π

p
t )

2 + λw(∆ŵt + πpt )
2 + λx(Ŷt − Ŷ e

t )2
]

+ E0

∞∑
t=0

βtq1,t

{
πpt − κ(Ŷt − Ŷ e

t )− βEtπpt+1 + κ
1

ωp
at − κ

1

ωp
wt

}
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where the central bank can commit and hence does not take Etπ
p
t+1 as given

∂L
∂πpt

= λpπ
p
t + λw (∆ŵt + πpt ) + q1,t − q1,t−1 = 0

∂L

∂
(
Ŷt − Ŷ e

t

) = λx(Ŷt − Ŷ e
t )− κq1,t = 0

with the exogenous processes

wt = Γwwt−1 +
βΓw

1− βΓwρA
κ

(
1

ωw + 1
+

1

ωp

)
at

∆ŵt = (Γw − 1)wt−1 +
βΓw

1− βΓwρA
κ

(
1

ωw + 1
+

1

ωp

)
at

Ŷ e
t = at

Now combine the two FOCs to get the targeting rule

(λp + λw) πpt + λw∆ŵt +
λx
κ

(Ŷt − Ŷ e
t )− λx

κ
(Ŷt−1 − Ŷ e

t−1) = 0.

The closed-form solution of the model is not very instructive, although possible.

68



Appendix G. Sticky Information Model730

Appendix G.1. Pure Sticky Information Model

• Flow welfare-based loss function

σ + η

θ (1 + θη)
x2
t +

∞∑
i=1

ζi (pt − Et−ipt)2

where xt = yt − yet and ζi =
δisi(1−δsi)

(1−δisi)(1−δi+1
si )

• Efficient rate of output

yet =
1 + η

σ + η
at

• Natural level of output

ynt =
1 + η

σ + η
at −

1

σ + η
µt

where at is technology shocks and µt is markup shocks.

• IS equation

λt = Etλt+1 + it − Etπt+1

• Marginal utility of consumption

λt = ψt − σyt

• Instantaneous optimal (relative) desired price

p#
t = p∗t − pt

=
σ + η

1 + θη
(yt − yet ) +

1

1 + θη
µt

• Sticky-information sector price dynamics

πt =
1− δsi
δsi

p#
t + (1− δsi)

∞∑
k=0

δksiEt−1−k (πt + κ∆yt)
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• Policy rule and shock processes

it = φππt + φyyt

ψt = ρψψt−1 + εψt

at = ρψat−1 + εat

µt = ρµµt−1 + εµt

We set β = 0.99, σ = 1, η = 1(Frisch elasticity of labor supply), θ = 10 (CES

parameter), κ = σ+η
1+ηθ

= 0.1818. Here, 1−δsi is the probability of updating information735

for firms in sticky-information world.

Appendix G.2. Sticky Information and Sticky Price Model

• Household preference

E0

[
∞∑
t=0

βtψt

(
C1−σ
t

1− σ
−
∫
Nt (j)1+η dj

1 + η

)]

• (Linearized) Dynamic IS curve

λt = Et [λt+1] + it − Et [πt+1]

λt = ψ̂t − σyt

• Instantaneous optimal desired price

p∗t = pt +
σ + η

1 + θη

(
yt −

1 + η

σ + η
at

)
• Optimal reset price for firm with ability of change price

bt = (1− βδ)
∞∑
k=0

(βδ)k Etp
∗
t+1

= (1− βδ) p∗t + βδEtb
∗
t+1

• Sticky-price sector price dynamics

pspt = (1− δ) bt + δpspt−1
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• Sticky-information sector price dynamics

psit = (1− λ) psit−1 + λp∗t + λ (1− λ)
∞∑
k=0

(1− λ)k Et−1−k (πt + κ∆yt)

• Aggregate price level

pt = spspt + (1− s) psit

(in steady-state P sp

P
= P si

P
= 1).

• Policy rule and shock processes

it = φππt + φyyt

ψ̂t = ρψψ̂t−1 + εψt

at = ρψat−1 + εat

We set β = 0.99, σ = 1, η = 1 (Frisch elasticity of labor supply), θ = 10 (CES

parameter), κ = σ+η
1+ηθ

= 0.1818. Also, s = 0.75 (fraction of firms under sticky-price740

constraint). Here, 1− δsp is the probability of getting chance to change price for firms

in sticky-price world, 1 − δsi is the probability of updating information for firms in

sticky-information world.
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Appendix H. Tables

Table H.6: Illustrative Parameter Values

Parameter Value Parameter Value

β 0.99 σ 1
κ 0.02 θ 10
ρj 0.9 θw = θp 10
γ 0.7 φy only 0.125
ν 1 φπ;φy 1.5, 0.2; 0.125, 20

Note: The parameter β denotes the rate of time preference,
σ the intertemporal elasticity of substitution, θ the elasticity
of substitution among different varieties of goods, ν the Frisch
elasticity of labor supply, κ = σ+ν

1+νθ the degree of price flexibil-
ity, φπ the systematic response to inflation in the Taylor rule,
φy the systematic response to output in the Taylor rule, γ the
returns to scale and θw and θp the elasticity of substitution
across differentiated varieties.
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Appendix I. Figures745

Figure I.10: Variance of Output and Welfare under Alternative Policy Rules
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(b) Welfare and Technology Shock
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(c) Output Volatility and Markup
Shock
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(d) Welfare and Markup Shock
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(e) Output Volatility and Preference
Shock
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(f) Welfare and Preference Shock

Note: This figure shows the volatility of output and welfare in our simple three-
equation model under alternative policy rules as we vary the expected duration of
price contracts, as discussed in section 4. The policy rules are shown in the legends
of the panels. We consider technology, markup and preference shocks.
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Figure I.11: Variance of Output, and Welfare Loss as a Function of Flexibility with Technology Shocks
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Note: This figure shows variance of output, and the welfare loss as a function of
price flexibility given technology shocks.
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Figure I.12: Variance of Output and Welfare Loss under Discretion as a Function of Flexibility with Tech-
nology Shocks
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Note: This figure shows variance of output, and the welfare loss under discretion
as a function of price flexibility given technology shocks.
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