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Abstract

We solve for the optimal time-consistent monetary policy in the New Keynesian model with

repeated simultaneous play between the monetary authority, households, and �rms. Recent work

on optimal time-consistent monetary policy has emphasized the existence of multiple Markov

perfect equilibria in the New Keynesian model (e.g., King and Wolman, 2004). In this paper, we

show that this multiplicity is not intrinsic to the New Keynesian model itself, but is instead driven

by an auxiliary timing assumption by previous authors that play is �repeated Stackelberg��

in which the monetary authority must pre-commit each period to a value for the monetary

instrument� as opposed to repeated simultaneous, in which the monetary authority and the

private sector determine the economic equilibrium simultaneously and jointly each period. A

contribution of our paper is to show how to de�ne the game between the monetary authority,

households, and �rms with repeated simultaneous play and aggregate resource constraints. We

show that the repeated simultaneous play assumption is the proper generalization of the large

existing literature on linear-quadratic optimal monetary policy under uncertainty (e.g., Woodford,

2003, Svensson and Woodford, 2003, 2004). We highlight and discuss additional advantages of

the repeated simultaneous play assumption. Finally, we derive a closed-form solution for the set

of all possible Markov perfect equilibria in the two-period Taylor contracting version of the New

Keynesian model with simultaneous play and show that the equilibrium in that model is unique.
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1 Introduction

Many countries have witnessed periods of high and persistent in�ation, as the U.S. did in the 1970s. What

caused these episodes? More importantly, how can central banks or governments prevent them from recurring

in the future? These are questions that remain important topics of research in monetary economics.

One prominent explanation, due originally to Barro and Gordon (1983) and re�ned by Chari, Chris-

tiano, and Eichenbaum (1998), is that the time-consistency problem of monetary policy in the absence of

a commitment mechanism (Kydland and Prescott, 1977) leads to a multiplicity of possible equilibria, some

with substantially higher in�ation rates than others. These theories su¤er from two important drawbacks,

however: First, they have little empirical content, because the enormous number and range of equilibria

they allow make the theories essentially impossible to reject or critique on the basis of observation. Second,

many of the equilibria implied by the models are complex and require a great deal of sophistication and

coordination across a large number of atomistic agents in order to arise.

In response to these shortcomings, the literature has turned to the much simpler and smaller class of

Markov perfect equilibria, in which agents may only condition their actions on economic fundamentals� i.e.,

the state variables of the model. A striking �nding of this literature (e.g., Albanesi, Chari, and Christiano,

2003, King and Wolman, 2004) is that there exist multiple Markov perfect equilibria in standard, New

Keynesian dynamic general equilibrium models. An implicit conclusion of these studies is that the U.S. (and

other countries) could once again �nd itself caught in a bad �expectations trap�for in�ation and a possible

repeat of the 1970s. A more explicit conclusion of these studies is that linear-quadratic approximations to the

New Keynesian model that have been used by many authors to compute optimal time-consistent monetary

policy (e.g., Clarida, Gali, and Gertler, 1999, Svensson and Woodford, 2003, Woodford, 2003) are completely

missing the most important features of the model.

In this paper, we show that multiple Markov perfect equilibria are not intrinsic to the New Keynesian

model itself, but instead are driven by an auxiliary assumption about the timing of play in the model that

previous authors have made for the sake of simplicity. In particular, a common feature across all of Albanesi,

Chari, and Christiano (2003), Khan, King, and Wolman (2001), Dedola (2002), King and Wolman (2004),

Siu (2005), and Armenter (2005) is a timing assumption in which each period is divided into two halves, with

the monetary authority setting the policy instrument (an interest rate or the money supply) in the �rst half

of the period, and the private sector responding in the second half of the period, in a repeated Stackelberg

fashion. We relax this assumption and instead allow the monetary authority to play simultaneously with the

private sector each period. We show that the optimal monetary policy in the New Keynesian model with

two-period Taylor contracts leads to a unique equilibrium under repeated simultaneous play.

One of the primary contributions of our paper is to show how to think about and model repeated simul-

taneous play in a formal macroeconomic dynamic game. In standard games of industry competition, �rms
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may set whatever prices or produce whatever quantities they desire, subject only to their own technological

constraints, so simultaneous play poses no particular problems. In a macroeconomic model, by contrast,

the game comprises the entire economy, so that if a positive measure of �rms or households were to deviate

from equilibrium play� or if a large player, such as the central bank, were to deviate� then the economy�s

aggregate resource constraints would be violated. For example, even though any individual household is

unrestricted in its choice of labor and consumption, the set of all households collectively must supply enough

labor to produce the amount of output that is collectively consumed. Similarly, the central bank cannot

supply more money than households collectively demand. How can we de�ne the game so that non-violation

of the economy�s aggregate resource constraints is assured? The issue is more than academic: as Bassetto

(2002, 2005) shows in analyzing the �scal theory of the price level, a game that does not explicitly respect

the economy�s aggregate resource constraints under all possible play� including out-of-equilibrium play� is

not well-speci�ed and can lead to pseudo-equilibria that are in fact completely invalid when the game is

speci�ed more carefully. We show how to formally model the standard New Keynesian model as a dynamic

game in which the economy�s aggregate resource constraints are respected.

We are not the �rst authors to �nd repeated simultaneous play to be more appealing than repeated

Stackelberg play for the study of optimal monetary policy. Indeed, the large literature on optimal time-

consistent policy in linear-quadratic models dating back to the 1980s works largely within this framework.

The assumption is made most explicitly in papers which allow for stochastic shocks and imperfect observation

by policymakers and the private sector of the true state of the economy, such as Pearlman, Currie, and

Levine (1986), Pearlman (1992), Svensson and Woodford (2003), and Woodford (2003). This is because,

within the imperfect information framework, the optimal policy cannot be expressed simply as a function of

the (unobserved) predetermined variables of the model, but instead is a function of the policymaker�s and

the private sector�s optimal estimate of those variables conditional on all information at date t, including

output and in�ation. This simultaneity (or �circularity� in the terminology of Svensson and Woodford)

causes the policymaker�s optimal choice of instrument to depend upon the private sector�s choices for output

and in�ation which in turn depend upon the policymaker�s instrument choice. One of the contributions of

our paper is to show how to think about and model this simultaneity within the framework of a formal

dynamic game.

We also argue that the assumption of repeated simultaneous play by the monetary authority is more

appealing than that of repeated Stackelberg play, for a number of reasons. First, when the central bank

and the private sector play simultaneously, it no longer matters whether the central bank�s instrument is the

money stock or the nominal interest rate� the set of equilibria are identical under either assumption� an

equivalence which does not hold under repeated Stackelberg play, as shown in section 5, below, and in Dotsey

and Hornstein (2006). We regard this equivalence between monetary instruments as an appealing feature
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of our timing assumption because most central banks in practice adjust the money supply to maintain a

short-term interest rate target, and it is not at all clear which should be regarded as the monetary policy

instrument if the two are not equivalent. Second, central banks around the world continuously monitor

and maintain a target for a short-term interest rate (or monetary aggregate) and are free to continuously

adjust this target should unforeseen economic developments arise over the course of the month or quarter;

thus, the idea of central banks �pre-committing�to a given level of the money supply or an interest rate is

arguably at odds with the data.1 Although one can address this second criticism by shrinking the length

of a period in the Stackelberg model down to one day or even one hour, it is still not clear why one would

want to treat the central bank and the private sector so asymmetrically as to have one or the other always

play �rst. Moreover, shrinking the length of a period does not address the �rst criticism above. Third,

much existing analysis of optimal time-consistent monetary policy in the New Keynesian model has been

done using a linear-quadratic approximation within a simultaneous timing framework (e.g., Clarida, Gali,

and Gertler, 1999, Svensson and Woodford, 2003, and Woodford, 2003), exactly the timing assumption

that we argue should be used in general. Thus, our analysis� and not that in King and Wolman (2004),

Albanesi, Chari, and Christiano (2003), and the other papers cited above� provides the proper benchmark

with which to make judgments regarding the accuracy or possible misspeci�cation of the LQ approach to

optimal monetary policy.

An additional contribution of our paper relative to the previous literature is the computation of closed-

form solutions for all possible Markov perfect equilibria in the two-period Taylor contracting version of the

New Keynesian model. As a result, we are able to rigorously prove the existence and nonexistence of multiple

equilibria in that model.

The remainder of the paper proceeds as follows. Section 2 de�nes the New Keynesian model of the

private sector economy and the necessary conditions for a private sector equilibrium in that economy given

an exogenous interest rate path. Section 3 presents the optimal policy problem for the central bank, formally

de�nes te game being played, and de�nes the necessary conditions for a Markov perfect equilibrium in the

game. Section 4 derives the closed-form solution to the model and proves the uniqueness of the equilibrium.

Section 5 discusses the di¤erences between simultaneous and Stackelberg timing assumptions in the simplest

possible case of a model with only two periods. Section 6 concludes. A Technical Appendix contains details

of the proofs in Section 4.

1Although we rarely observe central banks changing their instrument between regularly scheduled meetings along the equi-
librium path, this should not be interpreted as a structural constraint on their feasible set of policies or their out-of-equilibrium
behavior.
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2 The Private Sector Economy and Private Sector Equilibrium

We focus in this paper on a standard dynamic New Keynesian model of the economy with monopolistically

competitive intermediate goods markets, two-period Taylor price contracts, perfectly competitive factor

markets, �exible wages, and homogeneous labor. For tractability and simplicity, we abstract away from

endogenous variation in the capital stock.

Before turning to the question of optimal monetary policy, it will be useful to �rst de�ne the New

Keynesian economy and the corresponding game �0 for the case of an exogenous interest rate process frtg.

This will allow us to address a number of key issues without the additional complications of having the

central bank as an additional player in the game. We will defer until the next section the game �1 that

we are primarily interested in, in which the short-term nominal interest rate is set by an optimizing central

bank.

2.1 Players in the Game �0

2.1.1 Firms

Time is discrete and continues forever. There is a continuum of atomistic �rms in the economy indexed by

i 2 [0; 1). The measure of �rms is constant over time. Each �rm is a player in the game �0. At each time

t, each �rm produces a single, di¤erentiated product, also indexed by i, according to the linear production

function:

yt(i) = lt(i);

where yt(i) is the quantity of output produced and lt(i) the quantity of labor employed by �rm i in period

t.2

The price of each good i must be set for two periods in a staggered Taylor fashion, with �rms in [0; 1=2)

free to change their price in even periods and �rms in [1=2; 1) free to change their price in odd periods. Each

�rm i must satisfy demand for its product in every period at its posted price pt(i), hiring whatever labor

inputs are necessary. Nominal pro�ts for �rm i in period t are given by:

�t(i) � pt(i)yt(i)� wtyt(i);

where wt is the nominal wage in period t. Firms are owned by households, below, and distribute all pro�ts

or losses to all households equally every period. We de�ne aggregate �rm pro�ts by:

�t �
Z 1

0

�t(i)di: (1)

2There is no loss of generality in assuming linearity (as opposed to homotheticity of lower degree) because households�

disutility of working, de�ned below, will be homothetic with arbitrary parameter �.
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2.1.2 Households

The economy also contains a continuum of atomistic households indexed by j 2 [0; 1]. Each household is a

player in the game �0. There is no population growth. At each date t, each household j receives a utility

�ow (payo¤) according to:
Ct(j)

1�' � 1
1� ' � �0

Lt(j)
1+�

1 + �
; (2)

where Ct(j) is the quantity of the �nal good consumed and Lt(j) the quantity of labor supplied by household

j in period t. The household discounts future utility �ows (payo¤s) at the rate � per period. Households

can buy and sell risk-free one-period nominal bonds which pay interest rate rt. The household faces an

intertemporal budget constraint de�ned by the asset accumulation equation:

Bt(j) = (1 + rt�1)Bt�1(j) + wtLt(j) + �t � PtCt(j); (3)

where �t denotes the household�s aliquot share of aggregate �rm pro�ts, wt denotes the nominal wage, Pt

the price of the consumption good, and Bt(j) the household�s stock of one-period bonds at the end of period

t, which we require to satisfy the transversality condition:

lim
T!1

eEjtBT (j) T�1Y
s=t

(1 + rs)
�1 � 0; (4)

where eEjt denotes the mathematical expectation conditional on household j�s information set at date t
(speci�ed below).

2.2 Two Mechanisms (not Players) in the Game �0

The economy also consists of two mechanisms� which are not players in the game �0� that are not formally

necessary but help to clarify the exposition of the model and the game. For example, one can de�ne a contin-

uum of competitive �nal good-producing �rms as players in the game �0, but then those additional players

(which are uninteresting) must be carried through the formal de�nition of the game.3 Rather than distract

attention from the essential features of the game, we simply assume that the aggregation of intermediate

goods into �nal goods happens automatically and non-strategically, as speci�ed below.

3Alternatively, one can drop the �nal good entirely and de�ne the household�s utility function directly in terms of the

individual goods i rather than an aggregate consumption good, but then the action space of each household must be de�ned as

a function space over all the individual goods, which introduces additional and uninteresting complications to the problem.
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2.2.1 Goods Aggregator

The economy has an automatic intermediate good aggregator� that is not a player in the game �0� that

transforms intermediate goods i into the �nal consumption good according to:

Yt �
�Z 1

0

yt(i)
1=(1+�)di

�1+�
: (5)

The transformation is perfectly competitive, i.e.,

yt(i) =

�
pt(i)

Pt

��(1+�)=�
Yt; (6)

where Pt is the Dixit-Stiglitz aggregate price index,

Pt �
�Z 1

0

pt(i)
�1=�di

���
: (7)

2.2.2 Walrasian Auctioneer

The economy also has an automatic Walrasian auctioner� that is not a player in the game �0� that ensures

that all markets clear at each time t. As we will specify in detail below, a �rm that is resetting price in period

t does not set a price but rather submits a price schedule to the Walrasian auctioneer that is a function of

relevant variables dated t, such as wt; Pt; rt; and Yt. We defer the details and discussion of this assumption

to the next section, but note here that this assumption on the �rm�s action space is necessary if we wish to

allow the �rm to set a price in the game that is the usual function of aggregate variables dated t. Households

likewise submit joint consumption demand-labor supply schedules to the auctioneer as functions of relevant

variables dated t, such as wt; Pt; rt; and �t: The auctioneer then determines the values of wt; pt(i); Ct(j);

and Lt(j) for all i and j that clear the �nal good market, the labor market, and the bond market at time t,

i.e.: Z 1

0

Ct(j)dj = Yt; (8)Z 1

0

lt(i)di =

Z 1

0

Lt(j)dj; (9)

and Z 1

0

Bt(j)dj = 0: (10)

Equation (8) states that aggregate consumption equals output of the �nal good, (9) that aggregate labor

demand equals aggregate labor supply, and (10) that bonds are in zero net aggregate supply. We show below

that such an equilibrium exists.

Why do we need the assumption of an auctioneer? First, the auctioneer makes explicit the mechansim by

which the economy�s aggregate resource constraints are enforced. In standard games of industry competition,
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players may set whatever prices or produce whatever quantities they desire, subject only to their own

technological constraints. Here, the game comprises the entire economy, and if a positive measure of �rms

or workers were to deviate from equilibrium play� or if a large player such as the monetary authority

were to deviate� then the economy�s aggregate resource constraints (8)-(10) could be violated without the

intervention of the Walrasian auctioneer.

The second reason to assume a Walrasian auctioneer is that it explicitly allows �rms and households

to play price schedules and consumption demand and labor supply schedules. Without this ability, �rms

and households cannot condition their play on the outcome of key variables dated t, such as wages wt,

prices Pt, and the interest rate rt. For example, an auctioneer is clearly implicit in the literature on linear-

quadratic optimal control with imperfect information (e.g., Pearlman et al., 1986, Pearlman,1992, Svensson

and Woodford, 2003, Woodford, 2003), where simultaneous play by the monetary authority and the private

sector is explicitly assumed. Without the assumption that �rms and households play entire schedules that

are then cleared by an auctioneer, such explicitly simultaneous play is impossible. Our assumption of an

auctioneer thus makes explicit a device which is implicitly at work in much of the earlier literature.

2.3 Information Sets in the Game �0

De�ne the publicly available information set at time t, It, to be the set of all aggregate variables dated t� 1

and earlier:

It � fLs; Ps; ps; rs; ws; Ys;�s : s < tg (11)

where in addition to the aggregate variables de�ned previously, we de�ne aggregate labor:

Lt �
Z 1

0

Lt(j)dj; (12)

and the average price set by �rms who change price in period t:

pt �
"Z tmod 2+1

2

tmod 2
2

pt(i)
�1=�di

#��
: (13)

Note that we do not de�ne aggregate bond holdings as a variable, because the Walrasian auctioneer will

constrain these to be in zero net aggregate supply every period. Similarly, we do not de�ne aggregate

consumption because the auctioneer will constrain it to equal aggregate output in every period. Also note

that the time-t realizations of variables are not in the information set at time t, because they depend on the

actions that are chosen by �rms and households at time t.

Each �rm i and household j at time t observes the set It and also the history of its own actions and

outcomes in all previous periods. Thus, we de�ne the information set of �rm i at time t by:

Iit � It [ fps(i); ys(i);�s(i) : s < tg; (14)
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and the information set of household j at time t by:

Ijt � It [ fCs(j); Ls(j); Bs(j) : s < tg: (15)

Note that this implies that individual �rms and households are anonymous in the sense that the histories of

their individual actions and outcomes are unobserved by the other players of the game.

We will use eEt to denote the mathematical expectation operator conditional on information set It, eEit to
denote the mathematical expectation conditional on information set Iit, and eEjt to denote the mathematical
expectation conditional on information set Ijt. We state the following observation as a proposition:

Proposition 1 For X 2 fL;P; p; r; w; Y;�g, the following equalities hold for all i, j, and t: eEitXt = eEtXt,eEitXt+1 = eEtXt+1, eEjtXt = eEtXt, and eEjtXt+1 = eEtXt+1:
Proof. The proof follows from two observations. First, �rm i is anonymous, so the actions of other �rms

and households cannot depend on fps(i); ys(i);�s(i) : s < tg, by assumption. Second, �rm i has measure zero,

so changes in fps(i); ys(i);�s(i) : s < tg have no direct e¤ect on Xt or Xt+1, holding fps(k); ys(k);�s(k) :

s < tg, k 6= i, constant. It follows that Xt and Xt+1 are independent of fps(i); ys(i);�s(i) : s < tg.

Similarly, household j is anonymous and has measure zero, so Xt and Xt+1 are likewise independent of

fCs(j); Ls(j); Bs(j) : s < tg.

2.4 Action Spaces in the Game �0

If i 2 [0; 1=2), then in every even period t �rm i submits a price schedule, or function, to the Walrasian

auctioneer, which can depend on the aggregate variables of the model that are realized at date t: Lt; Pt; pt;

rt; wt; Yt; and �t. Thus, the action space of each �rm is a function, rather than a real number. We restrict

the �rm to submit price schedules that are continuous functions of these variables, although in equilibrium

this restriction is not binding. The action space of each �rm i in each period t is thus C(R7), the space of

continuous functions from R7 into R+. In odd periods, �rm i has empty action space.

If i 2 [1=2; 1), then the action spaces of �rm i are the same as above, except that the �rm submits a price

schedule to the auctioneer in odd periods, and has empty action space in even periods.

For household j in period t, the household likewise submits a joint consumption demand-labor supply

schedule to the auctioneer that depends on aggregate variables realized in period t: Lt; Pt; pt; rt; wt; Yt;

and �t. Again, we restrict the household to play functions that are continuous, although in equilibrium this

restriction is not binding. The action space of each household j in each period t is thus C(R7;R2+), the space

of continuous functions from R7 into R2+.

Note that �rms and households all play simultaneously in each period t, although the simultaneity is

di¤erent than in standard games of industry Bertrand or Cournot competition. The reason for the di¤erence
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is that in our model, the players of the game must collectively obey the aggregate resource constraints. This

is impossible to guarantee unless each household and �rm plays a function rather than a real number, where

the functions explicitly depend on prices, wages, and aggregate demand conditions in date t. The auctioneer

then determines the equilibrium that satis�es the resource constraints.

It is also worth emphasizing the distinction between the action spaces and strategies of players in the game.

For example, denote household j�s action space above by A(j), and the history fLs; Ps; ps; rs; ws; Ys;�s;

Cs(j); Ls(j); Bs(j) : s < tg 2 R! by ht(j). Then a strategy for household j is a sequence of functions

f�t(j)g; t 2 Z; �t(j) : R! ! A(j), that specify what action household j will play at each time t after

observing history ht(j). Just because the household�s action space includes functions of variables dated t,

rather than real numbers, does not mean that the household is constrained in any way from playing strategies

that are functions of the entire history ht(j) of observed outcomes. In fact, it is well known from dynamic

programming that the household�s optimal strategy is to play schedules for Ct(j) and Lt(j) that depend on

the household�s inherited stock of bonds Bt�1(j), as well as any other state variables that may in�uence the

future stochastic behavior of fPs; rs; ws;�sg, s > t.

2.5 Optimality Conditions in the Game �0

2.5.1 Firm Optimality Conditions

The �rm�s objective (payo¤) in every other period t is to maximize the expected present discounted value

of pro�ts over the two periods in which that price remains in e¤ect:

eEit [�t(i) +Qt;t+1�t+1(i)] ;
taking the demand curve for the �rm�s product (6) as given and where Qt;t+1 denotes the stochastic discount

factor by which the economy values random nominal income at date t+ 1 in monetary units at date t.4

Firm optimization implies that, for a �rm that is permitted to reset its price in period t, the optimal

price p�t (i) satis�es the �rst-order condition:

@

@pt(i)
eEit[�t(i) +Qt;t+1�t+1(i)] = 0;

Evaluating this derivative yields the optimality condition:

p�t (i) = (1 + �)
eEtP (1+�)=�t Ytwt + eEtQt;t+1P (1+�)=�t+1 Yt+1wt+1eEtP (1+�)=�t Yt + eEtQt;t+1P (1+�)=�t+1 Yt+1

(16)

where we have used Proposition 1 to replace the eEit operator with eEt in (16).
4Such a stochastic discount factor exists�see, e.g., Cochrane (2001) and the references therein. In equilibrium, all households

will be identical and thus the stochastic discount factor will be the marginal rate of substitution of the representative household.
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An optimal price p�t (i) must also satisfy the second-order condition:

@2

@pt(i)2
eEit[�t(i) +Qt;t+1�t+1(i)] � 0;

and ex ante nonnegative expected pro�t (non-shut-down) condition:

eEit [�t(i) +Qt;t+1�t+1(i)] � 0;
which yield, respectively:

p�t (i) � (1 + 2�)
eEtP (1+�)=�t Ytwt + � eEtQt;t+1P (1+�)=�t+1 Yt+1wt+1eEtP (1+�)=�t Yt + � eEtQt;t+1P (1+�)=�t+1 Yt+1

;

and

p�t (i) �
eEtP (1+�)=�t Ytwt + � eEtQt;t+1P (1+�)=�t+1 Yt+1wt+1eEtP (1+�)=�t Yt + � eEtQt;t+1P (1+�)=�t+1 Yt+1

:

Note that, given (16), both inequalities above are satis�ed automatically so long as the markup � > 0, which

we have assumed.

Given (16), what price schedule should the �rm play at time t? Even though the time-t realizations of

variables such as Pt; rt; wt; and Yt are not in the �rm�s information set at time t, the �rm is still able to

submit a schedule for pt(i) to the Walrasian auctioneer that is a function of those time-t realizations, by our

de�nition of the �rm�s action space. Thus, the optimal action by �rm i at time t is the price schedule:

p�t (i) = (1 + �)
P
(1+�)=�
t Ytwt + EtQt;t+1P

(1+�)=�
t+1 Yt+1wt+1

P
(1+�)=�
t Yt + EtQt;t+1P

(1+�)=�
t+1 Yt+1

(17)

which di¤ers from (16) in that the conditioning of p�t (i) on Pt; wt; and Yt is explicit (the eEt operator on those
terms is dropped) and where we de�ne Et to be the mathematical expectation conditional on information

set It[ fLt; Pt; pt; rt; wt; Yt;�tg. Equation (17) is just the standard �rst-order condition from the literature

(e.g., Erceg et al., 2000, Woodford, 2003), which we have now derived rigorously within the framework of

the game �0.

We state one �nal observation as a proposition:

Proposition 2 The optimal choice of price schedule p�t (i) is the same for all �rms i that reset price in

period t. We denote this optimal price schedule, given by (17), by p�t .

Proof. The right-hand side of optimality condition (17) is identical for all �rms i:

Note that we do not need to assume symmetry because the actions of other �rms do not enter into

(17)� only aggregate variables enter into the equation. Thus, symmetry of the optimal price across �rms is

an implication of the model and not an assumption.
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2.5.2 Household Optimality Conditions

Household j at each time t faces a standard dynamic programming problem: choose Ct(j) and Lt(j)

(and state-contingent plans for the future values of these variables) to maximize expected welfare (2)

subject to the constraints (3)�(4), taking initial bond holdings Bt�1(j) and the stochastic process for

fLs; Ps; ps; rs; ws; Ys;�sg, s � t, as given. As was the case for �rms, the time-t realizations of the vari-

ables Lt; Pt; pt; rt; wt; Yt; and �t are not yet in the household�s information set at time t, but the household

is permitted to submit schedules for Ct(j) and Lt(j) to the Walrasian auctioneer that are functions of those

time-t realizations.

The solution to this programming problem for the optimal functions C�t (j) and L
�
t (j) is well known,

though closed-form solutions do not exist in general. Optimal consumption behavior satis�es the Euler

equation:

C�t (j)
�' = eEjt�(1 + rt) Pt

Pt+1
C�t+1(j)

�'; (18)

optimal labor supply sets the intratemporal marginal rate of substitution equal to the real wage:

�0L
�
t (j)

� = eEjtwt
Pt
C�t (j)

�'; (19)

and the transversality condition (4) is satis�ed with equality:

eEjt 1X
T=t

Rt;TPTC
�
T (j) = (1 + rt�1)Bt�1(j) +

eEjt 1X
T=t

Rt;T [wTL
�
T (j) + �T ] ; (20)

where Rt;T �
QT�1
s=t (1 + rs)

�1:

Household j�s optimal choice of consumption demand-labor supply schedule at time t, fC�t (j); L�t (j)g,

is implicitly de�ned by the three well-known equations (18)�(20). We state the following observation as a

proposition:

Proposition 3 Suppose that Bt�1(j) = Bt�1(k) for two households j and k. Then the optimal actions

fC�t (j); L�t (j)g = fC�t (k); L�t (k)g. If Bt�1(j) is the same for all households j 2 [0; 1] except possibly a set S

of measure zero, then the optimal actions fC�t (j); L�t (j)g are the same for every household j =2 S, and we

denote these actions by fC�t ; L�t g.

Proof. As was the case for �rms, the household�s optimal actions at time t, implicitly de�ned by (18)�

(20), depend on variables dated t, such as rt; wt; Pt, and �t. Similarly, because the household can play

functions that depend on variables dated t, it is e¤ectively free to condition its expectation operator eEjt
in (18)�(20) on these variables as well, so that the operator eEjt can be thought of as conditional on all
aggregate and household-j-speci�c variables dated t and earlier. Finally, note that the optimality conditions

(18)�(20) for household j do not depend on the actions of other households except through the aggregate

quantities Pt, wt, etc.
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Again, note that the symmetry across households is not an assumption but rather an equilibrium impli-

cation of the model.

The stochastic discount factor by which the economy values future nominal income at date t+ 1 is then

given, in equilibrium, by:

Q�t;t+1 = �
(C�t+1)

�'

(C�t )
�'

Pt
Pt+1

: (21)

2.6 State Variables of the Game �0

Contrary to conventional wisdom (e.g., Woodford, 2003, King and Wolman, 2004), the game �0 has three

sets of state variables rather than none. First, there is the continuum of household-speci�c bond holdings,

Bt�1(j), j 2 [0; 1], which are state variables of the individual households�dynamic programming problems.

Second, there is the cross-sectional dispersion of prices:

�t�1 �
1Z
0

�
pt�1(i)

pt�1

��1=(1+�)
di: (22)

Third, there is the set of state variables that govern the stochastic process for frtg, such as rt�1. Note that

the inherited average price from last period, pt�1, is not a state variable, since all the nominal quantities in

the model can be normalized by pt�1 and not a¤ect the players�action spaces or payo¤s.

The conventional wisdom is correct, however, in the sense that the �rst two sets of state variables turn out

to be either irrelevant or uninteresting for our analysis of the Markov perfect equilibria of the game. First,

for the case of price dispersion �t�1, a feature of two-period Taylor contracting is that �t is always equal to

1 in equilibrium (as a corollary to Proposition 2), even if the inherited value of �t�1 were out of equilibrium

and unequal to 1. Thus, even if players at time t inherit a value for �t�1 6= 1, all players will correctly

expect it to return to zero from period t onward. Thus, while an out-of-equilibrium value of �t�1 6= 1 would

a¤ect outcomes in period t, it would not a¤ect households�and �rms�expectations of outcomes in period

t+ 1 and later. Thus, the state variable �t�1 poses no additional complications for our analysis and indeed

will always be equal to 1 in equilibrium.

Second, we are not interested in distributional issues, so we will restrict attention at the outset to the

case where the initial distribution of bond holdings across households is symmetric� i.e., Bt0�1(j) = 0 for

all j 2 [0; 1] except possibly a set of measure zero. In that case, all households with Bt0�1(j) = 0 will choose

the same fC�t (j); L�t (j)g = fC�t ; L�t g and the same B�t (j) = B�t = 0 in equilibrium for every time t. Thus,

following Phelan and Stachetti (2001), we will leave unspeci�ed the future behavior of �rms and households

when a positive measure of households deviate from equilibrium (i.e., we will assert that they will continue to

play a Markov perfect equilibrium, but we will not specify precisely what that equilibrium behavior is). We

will still be able to verify that no household has an incentive to deviate from any Markov perfect equilibrium

path that we compute.
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2.7 Private Sector Markov Perfect Equilibrium in the Game �0

The game �0 de�ned by the players, action spaces, information sets, and payo¤s above has a potentially large

number of equilibria (even without a central bank) if agents play trigger strategies based on past histories.

However, given the huge number of players involved, it is di¢ cult to see how all of them could coordinate on

the same trigger strategy to achieve most of these equilibria. Since such extraordinary coordination seems

implausible, we follow the literature and restrict attention to the much smaller and simpler class of Markov

perfect equilibria, in which each agent chooses actions based only on his or her own payo¤-relevant, or state,

variables (e.g., Fudenberg and Tirole, 2001).

We de�ne a Markov perfect �Private Sector Equilibrium�of the aggregate variables of the game �0 at

time t0 as follows:

De�nition 1 Given a value �t0�1, values Bt0�1(j) for all j 2 [0; 1] with Bt0�1(j) = 0 for almost all j, and

an exogenous stochastic process for frtg with state variables at each time t � t0 given by the vector Xt, a

Private Sector Equilibrium (PSE) at time t0 is a stochastic process for fLt; Pt; pt; wt; Yt;�tg; t 2 Z, that (i)

satis�es conditions (5)�(21) for all i, for all j, and for all t � t0, and (ii) for all t > t0, fLt; Pt; pt; wt; Yt;�tg

is independent of any variable �s, s < t, that is not an element of Xt.

Condition (ii) follows from the Markovian restriction on �rms�and households strategies and the obser-

vation that �t = 0 and B�t (j) = 0 for almost all j for all t � t0. It follows that the only state variables

that remain relevant for the stochastic process fLt; Pt; pt; wt; Yt;�tg are those that govern the exogenous

stochastic process frtg.

Note that we have omitted the individual yt(i) and pt(i) from the de�nition of Private Sector Equilibrium

above, as the equilibrium values of the pt(i) are completely determined by those of p�t and p
�
t�1, and the

yt(i) are completely determined by equation (6). Thus, these sectoral variables are extraneous as far as

determining the equilibrium values of the aggregate variables of the model.

[Maybe we should check/prove uniqueness of MPE for the game �0, given a set of assumptions about the

process frtg.]

3 The Optimal Policy Problem

We now turn to the question of the optimal time-consistent policy for frtg in the above model. We thus wish

to add one additional player to the game� an optimizing central bank� and denote this new game by �1:We

then calculate the optimal strategies of the central bank and the set of possible Markov perfect equilibria.
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3.1 The Central Bank and the Game �1

The central bank di¤ers from households and �rms in two key respects. First, the central bank is a large

player while households and �rms are atomistic� thus, while households and �rms take aggregate quantities

as given, the central bank understands that its choice of nominal interest rate rt changes the consumption

and labor choices of households (through the optimal strategy conditions (18)�(20)) and the prices set by

�rms (through the optimal strategy condition (17)). It is this strategic interaction between interest rate

setting and aggregate conditions that is at the heart of central banking.

The second di¤erence is that the central bank faces a dynamic inconsistency between its current plans

and its future policy choices. The reason is that the private sector�s expectation about future policy has

an e¤ect on current economic outcomes, giving the central bank an incentive to promise a future course

for policy today that it may wish to renege on tomorrow.5 This makes the problem of deriving optimality

conditions much more di¢ cult for the case of the central bank than it was for households and �rms, and

requires us to put considerably more structure on the permissible strategy functions of the central bank than

was necessary for households and �rms.

In each period t, the central bank sets a value for the nominal one-period interest rate rt. We show in

section 5, below, that de�ning the monetary instrument to be the money supply (and appending a private-

sector money demand function to the model) has no e¤ect on our results� indeed, we regard this equivalence

as an appealing feature of our assumption of simultaneous play between the central bank and the private

sector.

The central bank�s payo¤ each period is the average welfare across all households:Z 1

0

�
CT (j)

1�'

1� ' � �0
LT (j)

1+�

1 + �

�
dj: (23)

which the central bank discounts at the rate � per period.

The central bank at time t chooses an optimal value for the interest rate rt given the households�choices

for consumption demand-labor supply schedules fC�t ; L�t g and �rms� choices for price schedules p�t . The

restrictions we place on the central bank�s behavior are, �rst, that the central bank has no ability to commit

to future promises for its policy instrument, so that it operates under �discretion�, and second, that its

policy choice for rt at time t cannot depend on any variable dated t � 1 or earlier unless that variable is a

fundamental �state�variable of the model, so that we restrict attention to Markov perfect equilibria.

5 In contrast, the private sector faces no such issues in our model: the budget and resource constraints that they face are
independent of expectations, so that their problems can be solved by classic dynamic programming.
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3.2 Motivation for Simultaneous Play in the Game �1

We assume here that households, �rms, and the central bank all play simultaneously in each period t in

the game �1. By contrast, the previous literature has made the assumption that households and �rms play

simultaneously in each period t, but that the central bank must precommit to a value for its monetary

policy instrument (either a money stock or an interest rate) at the beginning of each period, with �rms and

households choosing prices, labor, and consumption afterward in a repeated Stackelberg fashion.

We �nd the assumption of simultaneous play between the central bank and the private sector to be the

most natural one for a number of reasons. First, under simultaneous play, it makes no di¤erence whether

one de�nes the monetary instrument to be the short-term nominal interest rate or the money supply� the

set of possible equilibria under either assumption for the monetary policy instrument is exactly the same

(as we show in section 5). In contrast, this equivalence across monetary instruments does not hold under

the repeated Stackelberg timing assumption, as shown by Dotsey and Hornstein (2006) and as we show in

section 5, below.6 We regard this equivalence between monetary instruments as appealing because most

central banks in practice adjust the money supply to maintain a short-term interest rate target, and it is

not at all clear which should be regarded as the monetary policy instrument if the two are not equivalent.

Second, central banks continuously monitor economic conditions and have the freedom and ability to

change the monetary instrument continuously, as needed. Thus, the assumption that central banks must

precommit to a �xed value of the monetary instrument is at odds with the data� although most central

banks �nd that, along the equlibrium path, they only rarely need to change the instrument between regularly

scheduled meetings, this should not be interpreted as a structural constraint on their feasible set of policies

or out-of-equilibrium behavior, should they be faced with a sudden deterioration in economic prospects.

Although one can address this particular criticism by shrinking the length of a period in the Stackelberg

model down to one day or even one hour, it is still not clear why one would want to treat the central bank

and the private sector so asymmetrically as to have one or the other always play �rst (and shrinking the

length of a period does not address the �rst criticism above).

Third, much existing analysis of optimal time-consistent monetary policy in the New Keynesian model

has been done using a linear-quadratic approximation within a simultaneous timing framework (e.g., Clarida,

Gali, and Gertler, 1999, Svensson and Woodford, 2003, and Woodford, 2003), exactly the timing assumption

that we argue should be used in general. Thus, our timing assumption provides the proper benchmark with

which to make judgments regarding the accuracy or possible misspeci�cation of the LQ approach to optimal

6 Intuitively, adding an additional equation for money demand and changing the monetary authority�s instrument to the
quantity of money is only guaranteed to yield the same set of equilibrium conditions if the quantity of money and the interest
rate are determined simultaneously. Under Stackelberg play, the equivalence between the two instruments is broken because
the private sector chooses the interest rate (and output, and expectations, etc.) after the monetary authority has already
precommitted to a level for the money supply. We will return to this issue in more detail in section 6.

16



monetary policy.

Fourth and �nally, the previous literature has typically found multiple equilibria under the optimal

monetary policy with discretion. However, these authors� assumption that the monetary authority must

precommit to a value for the monetary instrument� and cannot formulate its best response function in

terms of the realization of variables at time t� is a substantial constraint on the central bank�s ability to

control the economy. It is an interesting question, then, whether restoring this control to the central bank

(to an extent that is arguably more consistent with the data) would still admit the possibility of multiple

equlibria.

3.3 State Variables of the Game �1

Aggregate resource constraint in the labor market:

1

2

�
p�t
Pt

��(1+�)=�
Yt +

1

2

�
p�t�1
Pt

��(1+�)=�
Yt = Lt: (24)

Because state variables are of central importance to our de�nition of equilbrium, it is useful at this point to

rewrite the optimality conditions of households and �rms and the aggregate resource constraints in a way

that makes it more transparent what the �state�of the economy is. We begin by de�ning the variable:

xt �
p�t
p�t�1

;

which expresses �rms�optimal price p�t today relative to their optimal price last period.

The aggregation equations (??) and (12) then simplify, respectively, to:

p�t
Pt
= 2��

�
1 + x

1=�
t

��
;

and
Lt
Yt
= 2�

1 + x
(1+�)=�
t�

1 + x
1=�
t

�1+� : (25)

Firms�optimal pricing condition (??) can be rewritten as:

2��
�
1 + x

1=�
t

��
=
1 + �

1� �
�0
�
YtL

�
t + �

�
1 + x

1=�
t

�1+�
h1t
�

Y 1�'t + �(1 + x
1=�
t )h2t

; (26)

and households�optimal consumption choice (??) as:

Y �'t (1 + x
1=�
t ) = �(1 + rt)h3t; (27)

where h1t, h2t, and h3t denote the expectations:

h1t � Et
Yt+1L

�
t+1�

1 + x
�1=�
t+1

�1+� ; (28)
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h2t � Et
Y 1�'t+1

1 + x
�1=�
t+1

; (29)

h3t � EtY �'t+1(1 + x
�1=�
t+1 ): (30)

Note that equations (25)�(30) are su¢ cient to completely determine a private sector equilibrium of the

model, up to a nominal scale variable p�t�1 (or a choice of numeraire if we normalize p
�
t�1 = 1). We state

this as a proposition:

Proposition 4 Necessary and su¢ cient conditions for a Private Sector Equilibrium for fLt; xt; Yt; h1t; h2t; h3tg

at time t0 are that, for al t � t0: (i) (Lt; xt; Yt) satisfy conditions (25)�(27), taking the expectations

(h1t; h2t; h3t) as given, and (ii) expectations are rational, so that (h1t; h2t; h3t) are given by (28)�(30).

Moreover, equations (25)�(30) rewrite the optimality conditions of �rms and households completely in

terms of variables that are determined at time t or later. Thus, the model has no state variable� it is

completely forward-looking in that the equilibrium conditions at time t are completely independent of what

has taken place in the past, so long as the central bank and the private sector do not themselves condition

their behavior on an arbitrary past value of a variable� a case which we now explicitly rule out by restricting

attention to Markov Perfect Equilibria (MPE).

3.4 Markov Perfect Equilibrium in the Game �1

It follows that any MPE of the game between the central bank and households and �rms must, by de�nition,

involve strategies that are completely independent of the past realizations of all variables. This implies that

in any MPE the expectations are constants so that

h1t = h1 (31)

h2t = h2 (32)

h3t = h3 (33)

This restriction on expectation is important because it rules out that expectations can depend on �arbitary

history�or sunspots. We can now state a formal de�nion for a MPE

De�nition 2 A Markov Perfect Equilibrium (MPE) for fLt; xt; Yt; h1t; h2t; h3t; rtg at time t0 is a collection

of stochastic processes for these variables such that, for all t � t0: (i) (Lt; xt; Yt) satisfy households� and

�rms�optimality conditions (25)-(27), taking rt and (h1t; h2t; h3t) in (31)-(33) as given; (ii) (h1t; h2t; h3t)

satisfy conditions (28)-(30) for rational expectations; (iii) households�and frms�strategies are Markov, i.e.,

independent of history, independent of time, and independent of public sunspot variables, (iv) rt maximizes

(23) subject to (25)�(27), taking expectations (h1t; h2t; h3t) in (31)-(33) as given, and (v) the central bank�s

strategy is Markov.
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It is easily veri�ed that this de�nition corresponds to the more general de�nition of Markov perfect

equilibrium for arbitrary models (e.g., Fudenberg and Tirole, 1993) applied to the special case of our two-

period Taylor-contracting New Keynesian model. The key question is whether this de�nition implies a unique

equilibrium or if there are many value equilibria that satisify this de�nition.

We further state a proposition that follows directly from our de�nition of Marokov Perfect equilbria.

This proposition shows that, in a Markov perfect equilibrium, the expectations h1t, h2t, and h3t must be

constant over time:

Proposition 5 In a Markov Perfect Equilibrium, there exist positive real numbers h1, h2, and h3 such that

(h1t; h2t; h3t) = (h1; h2; h3) for all times t.

The proof of this proposition follows from the observations that: (1) h1t, h2t, and h3t are mathematical

expectations of variables in period t+1, (2) variables in period t+1 depend only on variables dated t+1 or

later, by Proposition 1 and De�nition 2, and (3) the central bank�s choice for rt and private sector�s choice

of (Lt; xt; Yt) cannot be functions of time, as part of the de�nition of an MPE. Thus, the mathematical

expectation is the same in every period t.

Intuitively, no matter what interest rate rt the monetary authority plays in period t, the perfect forward-

looking nature of the model and the assumption of an MPE implies that the equilibria in period t+1 onward

are una¤ected.

The proposition above indicates that our de�ntion of MPE corresponds to what some authors, such as

King and Wolman, refer to as �perfect foresight discretionary equilibrium�. Because the expectations are

constant accross time this indicates that current and future monetary policy choose the same action and

that the selection rule of equilibria is that only on equilbria will prevail in each period. Furthermore it is a

common knowledge what equilbria will prevail. The central question, then, is if the de�nition of equilibria

above allows for more than one equilbria. If there are more than one equilibria that satisfy the de�ntion

above there would be reasons to go further and try to specify which equilibria would be choosen at each

point in time (e.g. through the realization of exogenous sunspot variables).

3.5 Lagrangean Formulation of the Optimal Policy Problem in the Game �1

We solve for the optimality conditions of the central bank using a Lagrangean formulation of the optimal

monetary policy problem. Based on Propositions 1 and 2 and the restriction to MPE (De�nition 2), we may

write the optimal policy problem as:

maxEt

1X
T=t

�T�t

"
Y 1�'T

1� ' � �0
L1+�T

1 + �

#
; (34)
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subject to the three constraints:
Lt
Yt
= 2�

1 + x
(1+�)=�
t�

1 + x
1=�
t

�1+� (35)

(1� �)2��
�
1 + x

1=�
t

���
Y 1�'t + �(1 + x

1=�
t )h2t

�
= (1 + �)�0

�
YtL

�
t + �

�
1 + x

1=�
t

�1+�
h1t
�

(36)

Y �'t (1 + x
1=�
t ) = �(1 + rt)h3t (37)

Policymakers regard h1t, h2t, and h3t as exogenous constants, and thus they will drop out of the poli-

cymakers��rst-order conditions. Nevertheless, the expectations h1t, h2t, and h3t do in�uence the optimal

choice of rt, because they a¤ect the date t realizations of Lt, xt, and Yt through the constraints (35)�(37).

Of course, in equilibrium, the expectations ht must satisfy:

h1t = Et
Yt+1L

�
t+1�

1 + x
�1=�
t+1

�1+� (38)

h2t = Et
Y 1�'t+1

1 + x
�1=�
t+1

(39)

h3t = EtY
�'
t+1(1 + x

�1=�
t+1 ) (40)

and since we are ultimately interested in the (possibly multiple) equilibria of the model, rather than the out-

of-equilibrium behavior, we will substitute these restrictions back into policymakers��rst-order conditions

after di¤erentiating. Doing so yields the following �rst-order conditions for the optimal policy:

�Eulert = 0 (41)

�0L
1+�
t = �Yt

Lt
Yt
� �xt (1 + �)�0Yt�L

�
t (42)

�Yt
Lt
Yt

= Y 1�'t + �xt
�
(1� �)(1� ')2��

�
1 + x

1=�
t

��
Y 1�'t � (1 + �)�0YtL

�
t

�
(43)

�Yt 2
� 1 + �

�

xt � 1�
1 + x

1=�
t

�2(1+�) = �xt

�
(1� �)2��

"
Y 1�'t

1 + x
1=�
t

+ �
1 + �

�
h2

#
� �0�

(1 + �)2

�
h1

�
(44)

where �Yt , �
x
t , and �

Euler
t denote the Lagrange multipliers on equations (35), (36), and (37), respectively.

4 Analytic Solution for Markov Perfect Equilibria in the Game �1

The restriction of attention to Markov perfect equilibria and the absence of state variables in the model

combine to make a closed-form solution for the optimal policy and associated equilibria feasible. Since

interest often centers around the economy�s in�ation rate �t � Pt=Pt�1, we will also de�ne that auxiliary

variable here. Note that:

�
1=�
t =

1 + x
1=�
t�1

1 + x
�1=�
t

(45)
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Now, by Proposition 2 and the fact that the interest rt is also nonstochastic in equilibrium, we know that

the model is in steady state in every period t. The model can then be reduced down to a single equation for

�:

1 + ��(1+�)=�

1 + ��1=�
1 + �1=�

1 + �(1+�)=�

8<:1 � (� � 1)
h
1 + �� (1� ') 1+��

(1+�)=�

1+��1=�

i
(� � 1)

h
1� (1� ') 1+��(1+�)=�

1+��1=�

i
+ (1 + �(1+�)=�)

h
1� 1

1+�
1+��(1+�)=�

1+��1=�

i
9=; =

1

1 + �

(46)

The interesting question is, for what sets of parameter values �, �, ', and �, does there exist more than one

possible equilibrium value of �

To simplify notation, let:

�rat � 1 + ��(1+�)=�

1 + ��1=�

�rat � 1 + �1=�

1 + �(1+�)=�

N � (� � 1)
�
1 + �� (1� ')�rat

�
D � (� � 1)

�
1� (1� ')�rat

�
+ (1 + �(1+�)=�)

�
1� 1

1 + �
�rat

�
Note that the above are all functions of �. The large expression in (46) can then be written:

(1 + �)�rat�rat
�
1 � N

D

�
= 1 (47)

We have the following propositions (proofs provided in the Appendix):

The function D de�ned above takes on the value zero for precisely one value of � in the interval (1;1).

D has no zeros in (0; 1) if ' � �=(1 + �), and D has precisely one zero in (0; 1) if ' > �=(1 + �).

Proposition 6 Suppose that D has a zero at �0 2 (0; 1). Then there is no equilibrium steady-state � with

� � �0.

The following proposition proves there is a unique equilibrium relationship between � and � over the

interval (�0; �1) that lies between the zeros of D.

Proposition 7 Let �1 2 (1;1) be a zero of D. If D has a zero in (0; 1), denote it by �0; if D has no zero

in (0; 1), let �0 � 0. Then the function �(�) given by (46) is strictly increasing over the interval (�0; �1).

Together with Proposition 4, Proposition 5 shows that, if there exist multiple equlibria, the additional

equlibria must lie beyond the value �1 de�ned in Proposition 5. The following Proposition shows that, for

values of ' that lie quite close to 1, there is a unique equilibrium � for any given � 2 [��; 1].

Proposition 8 Let �1 2 (1;1) be a zero of D. Then �(�) < �� for all � > �1 if and only if ' �

1 + (1� �)=
�
�(1 + �)

�
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5 Discussion of Stackelberg vs. Simultaneous Play

In our previous discussion we assumed that the nominal interest rate is the instrument of policy. It will

not change the result if we assume instead, that the money supply is the instrument of policy. To see this

suppose that there is a cash advance constraint, as in King and Wolman (2005), so that

Mt

Pt
= Yt

in each period. We can rewrite this in terms of the variables of the previous section as

mtx
�1
t 2��(1 + x

1=�
t )� = Yt (48)

where we have de�ned mt � Mt

p�t�1
: Consider now a policy in which mt is the policy instrument instead of

rt: In this case the Lagrangian formulation in section 3.4. is exactly the same except we now take equation

(48) into account. Denoting the Lagrangian multiplier of this constraint by �Money
t we obtain once again

the same conditions as before because the �rst order condition with respect to mt indicates that

�Money
t = 0:

Hence introducing money explicitly into the analysis under our timing assumption has no e¤ect on the

results derived in the last few sections. Consider now the case in which the central bank selects the value

of the instrument before the market clear, so that it cannot react to private section action in period t. The

solution is much more complicated in this case and can only be solved numerically. Some progress can be

made analytically, however. To simplify we assume that � = 0 and ' = 1 and � = 0: Furthermore we assume

that the money supply is the policy instrument, and this assumption is important when the government

selects the policy before the market clear. To see how the Stackelberg timing assumption gives rise to

multiple equilibria it is easier to assume that there is a termination period T and solve backwards. Consider

�rst period T . The equilibrium condition at time T are

LT = 2
� 1 + x

(1+�)=�
t

(1 + x
1=�
t )1+�

YT

2��(1 + x
1
�

T )
� =

1 + �

1� � �0YT

mTx
�1
T 2��(1 + x

1=�
T )� = YT

For a given mT the solution is
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2��(1 + x
1
�

T )
� = (1 + �)�0mTx

�1
T 2��(1 + x

1=�
T )�

xT = (1 + �)�0mT

which gives a value for xT for a given mT : The optimal value for xT and mT is given by maximizing the

objective

lnYT � �0LT

which if we substitute the constrains gives

ln(2��(1 + x
1
�

T )
� 1

1 + �
��10 )� 1 + x

(1+�)=�
t

1 + x
1=�
t

1� �
1 + �

This gives rise to the �rst order condition

F (xT ; �) = �(1 + x
1=�
T )� xT (1 + x1=�T ) +

1

1 + �
(1 + x

(1+�)=�
T ) = 0

We now observe that for xT > 1 there is uniqueness since x1=�T > x
1=��1
T : Denote xT that solves this

equation �x and YT = �Y = 2��(1 + �x
1
� )� 1

1+��
�1
0 and LT = �L = 1+�x(1+�)=�

1+�x1=�
1
1+��

�1
0 : We now solve the

maximization problem in period T � 1 and show that there is multiple equilibria. The equilibrium condition

at time T � 1 are:

LT�1 = 2
�
1 + x

(1+�)=�
T�1

(1 + x
1=�
T�1)

1+�
YT�1

2��(1 + x
1
�

T�1)
�[1 + �(1 + x

1=�
T�1)

1

1 + �x�1=�
] = (1 + �)�0[YT�1 + �(1 + x

1=�
T�1)

1+�
�Y

(1 + �x�1=�)1+�
]

mT�1x
�1
T�12

��(1 + x
1=�
T�1)

� = YT�1

For a given mT�1 the solution is determined by combining the last two equations to yield

mT�1 = xT�1
1

1 + �
��10 [1 + �(1 + x

1=�
T�1)h2]� xT�12

��(1 + x
1=�
T�1)

1��h1

Figure X shows plots the right hand side of this equation. This line corresponds to all private sector

allocations that are consistent with equilibrium, we call it the PE curve. The horizontal line corresponds to

a particular choice fro mT�1, we call it the PC curve. Note that because of the shape of the PE curve there

are two equilibria for any given choice of mT�1
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6 Conclusions

To be added.
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