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The problem with Quantitative Easing is it works in practice, but it doesn’t work in theory.

Ben Bernanke, chairman of the Federal Reserve

1 Introduction

Starting at the onset of the economic crisis in 2008, the Federal Reserve expanded its balance

sheet by large amounts, on the order of $3 trillion, mostly under the heading of quantitative

easing (QE). At its peak in 2012, the cumulative amount of QE was equivalent to about 20%

of annual GDP. The enormous scale of this policy has largely been explained by the fact

that the Federal Reserve was unable to cut the federal funds rate further than it already had

because of the zero lower bound (ZLB) on the short-term nominal interest rate. Meanwhile,

high unemployment, slow growth, and low inflation called for further stimulus measures.

Many commentators argued that QE in the US prevented a much stronger contraction

during the Great Recession and that QE was a key reason why the US recovered more rapidly

than other countries. As pointed out by Federal Reserve chairman Ben Bernanke, however,

while this might be true in practice, a coherent theoretical rationale has been hard to formulate.

This paper formulates such a rationale for QE: it works because it allows the central bank to

credibly commit, in a time-consistent equilibrium, to expansionary future policy at the ZLB.

The paper accounts for QE in theory and shows numerical examples in which the effect is

considerable.

What is QE? Our paper defines it as a policy in which a central bank buys long-term

government debt with money.1 Since the nominal interest rate was zero when QE was imple-

mented in the US, it makes no difference whether QE is implemented by printing money (or

more precisely creating bank reserves) or by issuing short-term government debt: both types

of assets are government-issued papers that yield a zero interest rate. From the perspective of

the government as a whole, QE at the ZLB can then be thought of as reducing the maturity

of outstanding government debt held by the public, as the government is replacing long-term

debt with short-term debt. The main finding of this paper is that shortening the maturity of

government debt is an effective way to commit to a future monetary expansion, an especially

valuable tool when the central bank’s policy rate is constrained by the ZLB.

The main goal of QE in the US was to reduce long-term interest rates at the ZLB and

thereby stimulate the economy. Indeed, several empirical studies find evidence of a reduction

in long-term interest rates following these policy interventions by the Federal Reserve (see, for

1As we emphasize later, our paper is thus best interpreted as providing a model for what has been called
QE2 and QE3, as those policies were largely focused on purchases of long-term government bonds.
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example, Gagnon et al. (2011), Krishnamurthy and Vissing-Jorgensen (2011), Hamilton and

Wu (2012), Swanson and Williams (2013), and Bauer and Rudebusch (2013)).2

From a theoretical perspective, however, the effect of such a policy is not obvious since

open market operations of this kind are neutral (or irrelevant) in standard macroeconomic

models if we hold constant the future interest rate reaction function of the central bank.3 An

“irrelevance result” of this form was first stated by Wallace (1981). The Wallace irrelevance

result was extended by Eggertsson and Woodford (2003) to a model with sticky prices and

an explicit ZLB. Those results illustrate that, absent certain restrictions on asset trading that

prevent arbitrage, a change in the relative supplies of various assets in the hands of the private

sector has no effect on equilibrium quantities.

As pointed out by Eggertsson and Woodford (2003), and further illustrated in Woodford

(2012) in the context of the financial crisis, QE may be effective not only because it reduces risk

premia due to limits on arbitrage and/or differences in liquidity between private and public

bonds. QE can also reduce long-term interest rates if it communicates to the private sector

that the central bank will keep the short-term interest rates low once the ZLB is no longer

a constraint; that is, it signals a change in the policy rule taken as given in Eggertsson and

Woodford (2003). Krishnamurthy and Vissing-Jorgensen (2011) and Bauer and Rudebusch

(2013) find strong evidence in support of such a “signaling channel” of various QE programs;

that is, the programs generated expectations of low future federal funds rates.

The first stage of QE, which has been dubbed QE1, was implemented in response to the

collapse of the shadow banking system after a large disruption in credit markets in the fall of

2008. The Federal Reserve extended large amounts of credit in exchange for private assets—

for example, via the commercial paper facility. Models of private credit disruption, such as

those by Gertler and Karadi (2011, 2012) and Del Negro et al. (2017), have found that QE

considerably mitigated the effect of the financial crisis, largely by decreasing the credit spreads

that arose in that period of acute financial distress. This class of models finds a much smaller

effect of QE2 and QE3, but those interventions were undertaken in a period of more normal

credit markets and largely by exchanging short-dated government bonds (or reserves) for long-

dated government bonds. The focus of this paper is on this latter form of intervention, and

QE2 is the benchmark for a numerical calibration. In contrast to the existing literature, we

find that the effect may have been considerable because of the effect it had on expectations

about future interest rates, rather than via any direct effect on credit premia.

The main contribution of this paper is to provide a formal theoretical model showing how

2For example, Gagnon et al. (2011) estimate that the 2009 program, worth $1.75 trillion, reduced long-term
interest rates by 58 basis points, while Krishnamurthy and Vissing-Jorgensen (2011) estimate that the 2010
program, worth $600 billion, reduced long-term interest rates by 33 basis points.

3This may have motivated Ben Bernanke’s comment cited in the epigraph.
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QE generates a credible commitment to future monetary expansion in a standard general

equilibrium model. We formulate a Markov perfect equilibrium (MPE) as a game played by

the government and the private sector. In the MPE, agents use the natural state variables

of the game to predict the behavior of future governments. QE changes the dynamics of the

endogenous state variables of the game, thereby affecting expectations about the future path

of the policy instrument in a time-consistent equilibrium.

This paper proposes the rollover incentive as the main force that makes the government

more keen to set lower rates the more short-term debt it issues. This is the principal effect

of QE. The rollover incentive is best explained via a simple example that glosses over several

subtleties discussed in detail in the body of the paper. Consider yourself as evaluating two

mortgage contracts: a thirty-year loan with fixed interest rates and a loan contract with

floating interest rates that are determined monthly. Now consider your incentives if you get

the opportunity to set the federal funds rate. If you have a thirty-year loan, then your own

interest rate is unaffected by an increase in the federal funds rate, leaving your interest costs

unchanged. But if you have a flexible-rate loan, you have much to lose by increasing interest

rates, for it would directly increase your interest payments. You are now rolling over your

debt from one period to the next with higher interest rates.4 Accordingly, the more short-term

debt you hold, the less willing you are to raise the federal funds rate.

A better-known effect is termed the balance sheet incentive: interest rate policy can change

inflation and thus can change the real value of outstanding nominal debt. The balance sheet

incentive, however, as we show below, is independent of the maturity structure of debt (in

sharp contrast to the rollover incentive).

One objection to the main thesis of the paper is that many argue that fiscal considerations

do not play a fundamental role in the decision making of the Federal Reserve. While the

main analysis assumes a consolidated government budget constraint, we show that under

certain conditions, the model can equivalently be interpreted as referring to an independent

central bank that cares about it’s own balance sheet losses. We furthermore provide anecdotal

evidence in support of this interpretation: Based upon recently declassified documents from

the deliberations of the Federal Reserve Open Market Committee, we show that the Federal

Reserve closely tracked possible balance sheet losses associated with its QE policy.

Our paper is organized as follows. Section 2 considers a three-period model that can

be solved without resorting to any approximations. First, we show the deflation bias of

discretionary monetary policy at the ZLB: in the presence of a deflationary shock, a central

4As we discuss later, the rollover incentive operates under fully flexible prices, fully fixed prices, or anywhere
in between. In this example, a key subtlety that is glossed over is how to properly define the state variables
of the game played by successive governments—namely, the maturity value of debt and its composition—and
which asset-pricing conditions are constraints faced by the government in a given period in an MPE.
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bank would like to commit to lower future policy rates but, because of a fundamental credibility

problem, cannot do so. The paper then shows that the government can issue or buy a mix of

long- and short-term debt to make the optimal monetary policy incentive compatible. This is

the role QE plays in the paper. Section 3 considers an infinite-horizon model in a quantitative

analysis and shows a substantial role for QE. Section 4 considers extensions, presents empirical

evidence, and discusses the relationship of the results to the literature. Section 5 concludes.

2 A Simple Model

This section illustrates the role of the maturity of nominal government debt in affecting

expectations about future policy in a time-consistent equilibrium, using minimal modeling

ingredients.

2.1 Environment

2.1.1 Private Sector

There are three periods: 0, 1, and 2 (labeled short, medium, and long run respectively). A

representative household solves

max
Ct,Ht,Lt,Bt

E0

2∑
t=0

βt [logCt − χHt] ξt (1)

subject to the flow budget constraints

P0C0 +B0 + L0 = B−1 +

∫ 1

0

Z0(i)di+N0H0 − P0T0,

P1C1 +B1 = (1 + i0)B0 +

∫ 1

0

Z1(i)di+N1H1 − P1T1, and

P2C2 = (1 + i1)B1 + (1 +R0)L0 +

∫ 1

0

Z2(i)di+N2H2 − P2T2,

where Ct is consumption, Ht hours, and ξt a preference shock. B−1 is the initial wealth

the household holds in period 0; B0 and B1 are one-period nominal risk-free bonds; and L0

represents long-term nominal bonds issued in period 0 and repaid in period 2. The short-term

interest rates in periods 0 and 1 are i0 and i1, while R0 is the long-term interest rate in period

0. Nt is the wage rate, Pt the price index, Zt(i) firms’ profits (where i indexes firms), and Tt

taxes. The model abstracts from money but imposes the ZLB directly5.

5Eggertsson and Woodford (2003) motivate this abstraction in more detail.
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Consumption Ct is a Dixit-Stiglitz aggregator, Ct ≡
[∫ 1

0
ct(i)

θ−1
θ di

] θ
θ−1

, where θ > 1 is the

elasticity of substitution across goods with i indexing varieties of goods. For each variety, there

is a single firm, so that yt(i) = ct(i). The firm has a linear production function, yt(i) = ht(i),

where ht(i) is labor. The firm maximizes profits

max
pt(i),yt(i)

{(1 + τ)pt(i)yt(i)−Ntyt(i)}

subject to yt(i) =
(

pt(i)
Pt

)−θ

Yt, where Yt = Ct is aggregate output and τ denotes a production

subsidy. In periods 0 and 1, a fraction γ of firms set prices flexibly while the remaining

fraction index their prices to the past aggregate price index. In the terminal period, all prices

are flexible. Further details are provided in Appendix A.1.

We abstract from government spending but assume that the government needs to repay

the debt inherited in period 0, B−1. As in Barro (1979), taxes are not one-to-one transfers

of purchasing power from individuals to the government. Instead, they entail some collection

costs or indirect misallocation costs. More concretely, the “production” of government rev-

enues, Tt, requires labor input f(Tt), where f(.) is increasing and convex in Tt.
6 This, together

with the fact that production is linear in labor, implies that total hours can be expressed as

Ht = Yt∆t + f (Tt) ,

where ∆t ≡
∫ 1

0

(
pt(i)
Pt

)−θ

di ≥ 1 represents price dispersion. A major convenience of this set of

assumptions about taxes (and the fact that hours enter linearly in utility) is that taxes do not

appear directly in the equilibrium conditions that stem from the private sector maximization

problem (see (3)-(6) below). Since taxes imply wasted resources, however, they contribute

negatively to social welfare. A benevolent government will therefore try to minimize taxation.7

2.1.2 The Government’s Problem: A Maturity Value of Debt Characterization

The model can be summarized in three steps (details are provided in Appendix A). We obtain

the government’s objective via a second-order approximation of household utility (1):

−1

2
E0

2∑
t=0

βt
[
(Πt − 1)2 + λy(Yt − Ȳ )2 + λT (Tt)

2 + t .i .p.
]
, (2)

6Here, Tt denotes tax revenues net of government workers’ salaries.
7In the quantitative model, utility is not assumed to be linear in labor, but the implications for taxes are

the same. The reason is that taxes only affect allocations up to a second order in the quantitative model.
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where we have normalized the weight on inflation to 1 and the weights λy and λT are functions

of the structural parameters, whose derivation is relegated to Appendix A.2.8 The term

including taxes appears because of the taxation costs discussed in Section 2.1.1. The cost of

inflation is due to inefficient price dispersion.9

The optimality conditions for the household’s and firm’s maximization problems are

1

1 + it
= βEt

[
Yt
Yt+1

Π−1
t+1

ξt+1

ξt

]
for t = 0, 1, (3)

1

1 +R0

= β2E0

[
Y0
Ȳ
Π−1

1 Π−1
2

ξ2
ξ0

]
, (4)

it ≥ 0 for t = 0, 1, (5)

(Πt − 1) = κ(Yt − Ȳ ) for t = 0, 1, and Y2 = Ȳ . (6)

The household budget constraints, together with market clearing, imply the following flow

government budget constraints:

x0
w0

1 +R0

+ (1− x0)
w0

1 + i0
=
w−1

Π0

− T0, (7)

W1 =
w0

Π1

+ i1(1− x0)
w0

Π1

− (1 + i1)T1, and (8)

0 =
W1

Π2

− T2. (9)

Here, w0 ≡ b0(1 + i0) + l0(1 + R0), x0 ≡ l0(1+R0)
b0(1+i0)+l0(1+R0)

, and W1 ≡ w1 + x0
w0

Π1
, where

w1 ≡ (1 + i1)b1. The lower-case letters refer to the real value of the corresponding nominal

debt; that is, b0 ≡ B0

P0
, b1 ≡ B1

P1
, l0 ≡ L0

P0
, and b−1 ≡ w−1 ≡ B−1

P−1
.

The government’s problem is to maximize (2) by choosing {Πt,Tt} for t = 0, 1, 2, {it, Yt}
for t = 0, 1, and {w0, x0, R0,W1}, subject to (3)-(9), taking as given the initial value of debt

w−1. We next discuss the government’s problem and interpret the policy variables.

8We use the approximated welfare function, rather than the exact nonlinear utility, as it makes the results
more transparent and connects with existing literature that uses ad hoc welfare functions that take the same
form. In Appendix A.7.5, we show that the results from using this welfare function, relative to the exact
nonlinear household utility function, are almost exactly the same in our benchmark numerical experiment.

9Because all firms are the same in the model, with the exception that some firms index their prices, any
inflation implies firms are charging prices different from one another—that is, generating price dispersion—
which is inefficient, as it would be socially optimal for them all to charge the same price. Because there is no
price dispersion in period 2, the penalty on inflation is in reduced form for that period.
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2.1.3 The Government’s Problem: A Discussion

The most important feature of the characterization of the government’s problem in the last

subsection is that its budget constraint in period 1, (8), is written in terms of the maturity

value of debt issued in period 0, w0, and a variable that denotes the fraction of that debt

that is long term, x0, while its budget constraint in period 2, (9), is written in terms of the

maturity value of total debt issued in periods 0 and 1 that is due in period 2, W1. We call

this characterization the maturity-value notation. The reason we use this notation is that

our paper focuses on an MPE (see Maskin and Tirole (2001) for a formal definition of this

concept). The key restriction of an MPE is that the strategies of each player depend on the

minimum set of state variables.10

What are the state variables of the policy game in perid 2? This depends on how the

constraints are written.11 To see this, consider the government budget constraint in the

terminal period. It might seem natural to write the constraint in terms of the real value of

the short-term debt issued in period 0, b0 = B0

P0
, and the long-term debt issued in period 0,

l0 =
L0

P0
. Let us call this the debt-issuance notation. Written in this way, the period-2 budget

constraint is

0 = (1 + i1)
b1
Π2

+ (1 +R0)
l0

Π1Π2

− T2. (10)

Comparing (10) with (9), we see that using the debt-issuance notation implies there are five

state variables in period 2—that is, i1, b1, R0, l0, and Π1—while according to the maturity-value

notation, there is only a single state variable, W1.

Deriving (7)-(9) and using those constraints to define a policy game can be summarized

in four steps. First, all government debt issued is written in terms of its maturity value—that

is, the total number of (real) future dollars that the debt issued in a given period promises to

pay, inclusive of future interest rates. This yields w0 and w1. Second, define the fraction of

the debt in period 0 issued in terms of long-term debt, yielding x0. Third, identify the state

variables of the policy game in each period. Fourth, write the budget constraints today in

terms of both the state variable(s) for the next period and the state variables today.

What are the state variables in the three periods? The other constraints, (3)-(6), are

perfectly forward looking and hence have no endogenous state variables, and thus we can focus

on the budget constraints. As we dicussed above, according to the debt-issuance notation,

in period 2, the unique payoff-relevant state variable is the real value of all debt payments

10Equivalently, these are what Maskin and Tirole (2001) call the “coarsest history of player actions.”
11Consider, for example, the case in which (6) is written in terms of the price level instead of inflation; that

is Pt−Pt−1

Pt−1
= κ(Yt − Ȳ ). In that case, Pt−1 is a state variable of a policy game at time t. Since this equation

can obviously be written in terms of inflation Πt, which is determined at time t, the MPE refinement suggests
that the price level is not an appropriate state variable of the game.
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due at that time summarized by W1. This variable is the sum of the maturity value of debt

issued in period 1 (that is, w1) and the portion of the maturity value of debt issued at time 0

that was issued in the form of long-term bonds (that is, x0w0). Moving to period 1, the state

variables are the maturity value of debt issued in period 0 (that is, w0) and the portion of this

debt that is short term (that is, (1 − x0)w0). As we will see, these two terms play a central

role in the analysis and correspond to the balance sheet incentive and the rollover incentive

respectively. Finally, in period 0, the state variable is w−1.
12

The remainder of the model is relatively fairly standard. (3) is a standard asset-pricing

condition for one-period risk-free nominal debt, (4) is the asset-pricing condition for two-

period risk-free nominal debt, while (5) represents the ZLB, which we impose directly. (6)

is the Phillips curve, which applies in periods 0 and 1 because of price indexation.13 For

simplicity, there is no indexation in the terminal period, and thus there is long-run money

neutrality with output pinned down by Ȳ .

2.1.4 Thought Experiment and Parameterization

The following thought experiment is at the heart of our paper. Imagine that in the short run,

there is an unexpected shock, ξ0 < ξ̄, which generates a recession. In the medium and long

runs, there is no shock, so that ξ1 = ξ2 = ξ̄. In the baseline parameterization, each period is

a year and steady-state output is normalized to 1. The shock ξ0 is chosen so that the ZLB is

binding and output drops by 7.5% in the absence of any debt-maturity changes at the ZLB,

while κ is chosen so that the drop in inflation is 2.5%, implying that κ = 0.33. The initial

public debt is b−1 = 1—that is, 100% of annual output. The discount factor is β = 0.95.

The two welfare weights are λy = λT = 0.01. The values of these weights are motivated by

the parameterization in the quantitative model, where they are discussed in detail using the

underlying microfoundations of the quantitative model, along with sensitivity analysis.

2.2 The Deflation Bias

This section reviews optimal monetary policy at the ZLB; it abstracts from fiscal policy, which

is equivalent to λT = 0 in (2). Then taxes are lump sum and do not affect welfare. It follows

that both the level of debt and its composition are irrelevant. While this policy problem is well

known, it is a helpful starting point since QE in our model works as a commitment device for

12Relative to the debt-issuance notation, the maturity-value notation reduces the number of state variables
from five to one in the terminal period, while the number of state variables remains the same in periods 0 and 1.
In the language of Maskin and Tirole (2001), the maturity-value notation thus represents a “coarser partition
of the history of the players’ actions” than the debt-issued notation and thus is the correct specification of the
state in an MPE.

13The flexible price limit is κ−1 = 0, where no firms index their prices to the past level of aggregate prices.
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Figure 1: Impulse responses under optimal monetary policy at the zero lower bound

Note: The figure shows the responses of output, inflation, the nominal interest rate, and the real interest rate

when a negative demand shock makes the zero lower bound binding in the short run.

a discretionary government in an MPE. Hence, it sets the stage for the commitment problem

QE solves. The credibility problem faced by the government at the ZLB has been termed the

deflation bias of discretionary policy (Eggertsson (2006)).

To understand the deflation bias, consider first the solution in the absence of the ZLB, but

taking the shock at time 0 into account. According to objective (2), the first-best outcome is

Yt = Ȳ and Πt = 1, and it can always be achieved if the ZLB is not binding, as all that is

required is that the nominal interest rate satisfy i0 = β−1ξ0−1 while remaining at steady-state

in periods 1 and 2. If the shock in period 0 is sufficiently large, the ZLB is binding, making

the first-best solution infeasible. The yellow line in Figure 1 shows the equilibrium solution

under optimal monetary policy at the ZLB when the government can commit in period 0 to a

future policy.14 The government commits to keeping the nominal interest rate low in period

1, resulting in output being above Ȳ and inflation overshooting in period 1.

The commitment solution is not time consistent. This is because in periods 1 and 2, the

first-best equilibrium is feasible; that is, Y1 = Y2 = Ȳ and Π1 = Π2 = 1. If the government

14All commitment problems are solved using a Lagrangian method described in Appendix A.3.
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is not constrained by its promise in period 0, it will optimally choose this solution, as it

corresponds to the best it can do from that time onward. Taking this solution as given, the

time-consistent solution is not the commitment solution that promises an output boom and

inflation, but instead the one that can be backed out from (3) and (6) by setting i0 = 0,

Y1 = Ȳ , and Π1 = 1, yielding Y0 = β−1ξ0 < Ȳ and Π0 = κ(β−1ξ0 − Ȳ ) + 1 < Π̄. This solution

is shown in Figure 1 with a blue line. Clearly, the commitment solution is preferable when

considering the payoffs for all periods since it ameliorates a severe recession and deflation.

The problem is how to make the optimal commitment credible. This is where QE comes in.

2.3 Markov Perfect Equilibrium and Government Debt Maturity

The reason the maturity structure of government debt matters under discretion is that it

changes the incentives faced by future governments through the state variables of the game.15

The major challenge in solving for optimal policy under discretion is modeling expectations.

Expectations depend on how the private sector believes future governments will set policy.

The period-0 government, for example, can change these expectations because its choice of

the duration of its debt, x0, and its debt’s total maturity value, w0, become state variables

in the game played by the government in period 1. The key advantage of assuming a finite

horizon, as in this section, is that the policy game can be solved backward to yield solutions

for expectations as a function of state variables. We start by solving the government problem

in the long run (period 2) and then move backward in time.

2.3.1 The Long Run: The Inflation-Tax Trade-off

Period 2’s government solves

V 2(W1) = max
T2,Π2

{−1

2
(Π2 − 1)2 − 1

2
λT (T2)

2} (11)

subject to (9), where V 2 (W1) is the value function of the government and recall that in the

long run we assume that Yt = Ȳ .

Combine the optimality conditions (see Appendix A.4) to obtain

(Π2 − 1)︸ ︷︷ ︸
MC of Π2

= λTT2{
W1

(Π2)2
}

︸ ︷︷ ︸
MB of Π2

. (12)

15As we discuss in Section 4.1, under monetary and fiscal commitment, while the level of debt matters, the
maturity structure of debt is irrelevant.
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The left-hand side of (12) is the marginal cost of inflation, while the right-hand side is the

marginal benefit. Inflation is beneficial because it reduces the need for taxes. The marginal

benefit of inflation has two components. The first term on the right-hand side, λTT2, is the

shadow value ofW1 in period 2; that is, it reflects the marginal benefit of lower debt payments,

expressed in period-2 taxes.16 The second term, the expression in curly brackets, measures the

marginal reduction of debt payments resulting from higher inflation. Since debt is nominal,

higher inflation reduces the real value of debt payments (and thus the need for taxes).

(12) combined with (9) yields

(Π2)
4 − (Π1)

3 − λT (W1)
2 = 0. (13)

(13) implicitly defines the policy function for inflation,

Π2 = Π̄2(W1), (14)

and, via (9), the policy function for taxes,

T2 = T̄ 2(W1). (15)

Using the implicit function theorem, it can be shown that ∂Π̄2

∂W1
> 0, ∂T̄ 2

∂W1
> 0, and ∂V 2

∂W1
< 0

for W1 > 0. Two important inputs into the the solution in period 1 are ∂V 2

∂W1
and ∂Π̄2

∂W1
, denoted

by V 2
W and Π̄2

W respectively. The envelope theorem implies that

V 2
W = −λT

W1

(Π2)2
, (16)

while the implicit function theorem implies that

Π̄2
W = 2λT

W1

4(Π2)3 − 3(Π2)2
. (17)

It is straightforward to compute the nonlinear policy functions (14) and (15) numerically,

which are shown in Figure 2 with a solid line for the baseline parameterization.

Moreover, analytical solutions can be derived by approximating the policy functions local

to a point at which there are no tax distortions while takingW1 as given.
17 This approximation

leads to the following proposition:

16The shadow value is equal to the Lagrange multiplier on (9). See Appendix A.4.
17As the expansion is made around the point λT = 0, the approximation is accurate to an order O(||λT ||2),

where W1 is treated as a parameter.
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Figure 2: Long-run policy functions

Note: The figure shows policy functions for taxes and inflation in the long run for the model with optimal

monetary and fiscal policy under discretion. The only state variable for the long run is the total maturity value

of debt (W1) inherited from the short and medium runs. The dashed lines show the approximate, analytical

policy functions discussed in the text.

Proposition 1 Local to no tax distortions (λT = 0), given W1, the MPE in period 2 is

Π2 = 1 + (W1)
2λT and (18)

T2 = W1 − (W1)
3λT . (19)

Proof. First, at λT = 0, Π1 = 1; and by (9), T2 = W1. (18) then follows directly from a

first-order Taylor expansion of (13), and (19) follows from a first-order Taylor expansion of

(15) (details are provided in Appendix A.6).

Proposition (1) suggests that inflation increases quadratically withW1 while taxes increase

linearly. Hence, in trading off higher taxes vs. higher inflation, as the long-run debt burden

increases, the government optimally chooses to rely more and more on inflation. Figure 2

shows that the approximated policy functions shown in Proposition 1, shown by a dashed

line, match the nonlinear policy functions almost exactly.

2.3.2 The Medium Run: The Rollover and Balance Sheet Incentives

Period 1’s government solves

V 1(x0, w0) = max
Π1,T1,Y1,i1,W1

{−1

2
(Π1 − 1)2 − 1

2
λy(Y1 − Ȳ )2 − 1

2
λT (T1)

2 + βV 2(W1)} (20)

subject to (5), (6), (8), and

1 + i1 = β−1

(
Ȳ

Y1

)
Π̄2(W1), (21)

12



Figure 3: Medium-run policy functions

Note: The figure shows policy functions for inflation and the nominal interest rate in the medium run with

optimal monetary and fiscal policy under discretion. The vertical yellow line shows the optimal value of the

maturity of debt (x0= 1.31). The maturity value of debt (w0) is fixed at the optimal value (72%). The dashed

lines show the approximate, analytical policy functions discussed in the text.

where V 1(x0, w0) is the value function of the government, Π̄2(W1) is given by (14), and V 2(W1)

is given by (11). The government treats Π̄2(W1) and V
2(W1) as given but understands how

they change with the state variable W1.

The optimality conditions are shown in Appendix A.5. They contain the derivatives V 2
W

and Π̄2
W , which are given by (16) and (17). The fact that we have an explicit solution for

these derivatives is the main advantage of the assumption of a finite horizon. The government’s

optimality conditions and the constraints (5), (6), (8), and (21) define the equilibrium. These

equilibrium conditions then implicitly define the policy function for each of the endogenous

variables in period 1 as a function of the two state variables x0 and w0. That is,

Y1 = Ȳ 1(x0, w0),Π1 = Π̄1(x0, w0), i1 = ı̄1(x0, w0),W1 = W̄ 1(x0, w0), and T1 = T̄ 1(x0, w0).

(22)

The two most economically interesting policy functions are shown in Figure 3 (Appendix

A.7.2 contains the full set of policy functions). A lower x0—that is, a shorter maturity of

debt in period 0—triggers a lower nominal interest rate and higher inflation in period 1. This

suggests that the government in period 0 can credibly commit the government in period 1 to

a lower interest rate and higher inflation by shortening the duration of debt in period 0. This

is the key mechanism that gives QE its power. It thus deserves a careful description.

Below we derive a closed-form approximation of the policy functions for inflation and the

nominal interest rate shown in Figure 3. The steps to get there clarify the key mechanisms of

13



the model, and we discuss them first. Consider the budget constraint in period 1:

W1 =
w0

Π1︸︷︷︸
Balance sheet incentive

+ i1(1− x0)
w0

Π1︸ ︷︷ ︸
Rollover incentive

− (1 + i1)T1︸ ︷︷ ︸
Tax smoothing incentive

. (23)

Recall that W1 is the state variable of the game in the next period and thus determines the

continuation value βV2(W1) in (20). This variable is determined by three terms, all of which

play a key role in determining equilibrium inflation: the balance sheet incentive, the rollover

incentive, and the tax-smoothing incentive. We discuss each in detail below.

Combine the optimality conditions of the government’s problem in period 1 (see Appendix

A.5) to yield a condition analogous to (12) in period 2:

(1 +
λy

κ2
)(Π1 − 1)︸ ︷︷ ︸

MC of Π1

=
λTT1

1 + i1
{ w0

(Π1)2
+ κ−1(1 + i1)(1− x0)

Π1

Y1

w0

(Π1)2
+ i1(1− x0)

w0

(Π1)2
− κ−1(1 + i1)T1︸ ︷︷ ︸

∂W1
∂Π1

}

︸ ︷︷ ︸
MB of Π1

.

(24)

The left-hand side of (24) is the marginal cost of inflation, and the right-hand side is the

marginal benefit. Again, inflation is beneficial because it reduces the need for taxes. The

first term on the right-hand side, λTT1

1+i1
, reflects the marginal benefit of reducing future debt

payments (that is, W1), expressed in terms of period-1 taxes. The second term, the expression

in curly brackets, is equal to ∂W1

∂Π1
and reflects how much period-1 inflation reduces the debt

that is rolled over to the terminal period.

While the consolidated optimality condition (24) can be used to approximate the policy

function for inflation (as we will see below), the key to approximating the policy function for

the interest rate is to combine (6) with (21) to yield

1 + i1 = β−1

(
Ȳ

Y1

)
Π̄2(W1) = β−1

(
Ȳ

κ−1 (Π1 − 1) + Ȳ

)
︸ ︷︷ ︸

Sticky-price effect

Π̄2(W1)︸ ︷︷ ︸
Fisher effect

. (25)

According to the first term in (25), the nominal interest rate in period 1 declines as inflation

rises. The reason, which we term the sticky-price effect, is that higher inflation increases

output in period 1 relative to period 2, putting downward pressure on the interest rate (given

expectations about future inflation). The second term is the Fisher effect. It captures the

fact that higher inflation expectations increase the nominal interest rate.

An approximation of (24) local to the point λT = 0, Π1 = Y1 = 1, 1 + i1 = β−1, and

14



T1 =
w0

2
, taking the state variables x0 and w0 as given (see Appendix A.6), yields

MC1 = (1 +
λy
κ2

)(Π1 − 1) and (26)

MB1 =
βλTw0

2
{ w0︸︷︷︸

BSI

+ κ−1β−1(1− x0)w0︸ ︷︷ ︸
ROI 1

+ β−1 (1− β) (1− x0)w0︸ ︷︷ ︸
ROI 2

− κ−1β−1w0

2︸ ︷︷ ︸
TSI

}, (27)

where MC1 is the marginal cost of Π1 (the left-hand side of (24)) and MB1 is the marginal

benefit of Π1 (the right-hand side of (24)). Similarly, an approximation of (25) then results in

the following proposition:

Proposition 2 Local to no tax distortion (λT = 0),

(i) the policy functions for inflation and the interest rate in the MPE are given by

Π1 = 1 +

(
1

1 + λy

κ2

)
{1− κ−1β−1

2
+ β−1(1− β + κ−1)(1− x0)}

βλTw
2
0

2
and (28)

i1 = β−1 (1− β)− β−1κ−1(Π1 − 1), (29)

(ii) ∂Π1

∂x0
< 0, ∂i1

∂x0
> 0,

(iii) ∂Π1

∂w0
> 0, ∂i1

∂w0
< 0 iff x0 <

1+ 1
2
κ−1

1−β+κ−1 .

Proof. The first part of the proposition follows from equating (26) and (27) and from ap-

proximating (25) (further details are provided in Appendix A.6). The second and third parts

of the proposition follow directly by differentiating (28) and (29).

Proposition 2 shows in closed form what we showed numerically in Figure 3: a lower x0

(that is, a shorter maturity of debt in period 0) triggers higher inflation and a lower nominal

interest rate in period 1. Figure 3 plots the approximated policy functions (28) and (29) with

a dashed line in comparison with the exact policy functions shown by a solid line. Evidently,

the approximation is relatively accurate, suggesting that the approximated marginal cost and

benefit of inflation capture the key mechanism driving the shape of the policy functions.18

Figure 4 plots the approximated marginal cost and benefit of inflation. The marginal cost

of inflation increases linearly with inflation. The marginal benefit, however, is independent of

inflation, as shown by the horizontal line. The intersection of the two curves gives equilibrium

inflation, as given by (28), at point A. Consider comparative statics for x0 and w0. A reduction

in x0 increases the marginal benefit of inflation at any level of inflation—thus shifting the curve

18Local to no tax distortions, the time path for taxes is indeterminate. Assuming T1 = w0

2 , however, provides
a relatively good approximation, as seen in Figure 3.
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Figure 4: Medium-run marginal cost and benefit of inflation

Note: The figure shows the approximate marginal cost and benefit of inflation in the medium run with

optimal monetary and fiscal policy under discretion. The marginal cost of inflation is increasing in inflation.

The marginal benefit does not depend on inflation, but instead depends on the maturity of debt (x0). The

intersection of the two lines gives equilibrium inflation.

up—leading to a new equilibrium at point B with higher inflation and a lower nominal interest

rate (via (29)).19

The forces at play are what we term the rollover incentives 1 and 2 (ROI 1 and ROI 2)

in (27). ROI 1 arises because higher inflation reduces the real interest rate of the short-term

debt rolled over to the next period. This reduces the government’s financing cost. ROI 2

arises because the interest rate cost of short-term debt is nominal. Hence, for a given w0,

increasing the fraction of short-term debt increases the benefit of inflation.20 ROI 1 and ROI

2 only apply to the fraction of the debt that is short term—that is, (1 − x0)w0. Intuitively,

this is because the interest rate on the long-term debt has already been determined, while the

interest rate on the short-term debt that is rolled over is determined in period 1. A reduction

in x0 therefore amplifies these incentives by increasing the share of debt being rolled over.

A reduction in x0 always increases the marginal benefit of inflation. The same is not

true for an increase in w0. The condition x0 <
1+ 1

2
κ−1

1−β+κ−1 must be met for a higher w0 to be

inflationary.21 To interpret this condition, it is again useful to consider the marginal benefit of

inflation (described in (27)). Consider first the balance sheet incentive (BSI). This incentive

refers to the fact that since debt is nominal, inflation in period 1 reduces the real value of

19An increase in x0 would shift it down and hence decrease equilibrium inflation at point C.
20Note that with flexible prices, as κ−1 = 0, ROI 1 goes away but ROI 2 does not. Thus, because of ROI

2, a lower x0 triggers higher inflation in period 1, even under flexible prices. The period-1 policy functions
under flexible prices are given in Figures A.5 and A.6 in Appendix A.7.4.

21In our numerical example, the condition is x0 < 0.82.Appendix A.7.2 contains Figure A.3, which shows
the dependence of period-1 variables on w0 and illustrates how in our baseline parameterization with high x0,
equilibrium inflation is indeed declining in w0.
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the debt. Since both long- and short-term debt are nominal, however, this incentive does not

depend on x0. The marginal benefit of inflation via the BSI is always higher the higher is w0.

Conversely, because of the tax-smoothing incentive (TSI), the marginal benefit of inflation is

always lower the higher is w0. The ROI can either increase or decrease the marginal benefit

of inflation associated with a higher w0, depending on whether x0 is greater than or smaller

than 1. Which force prevails, and what is the mechanism?

To understand how the forces interact, it is useful to consider the special case x0 = 1.

In that case, the government only issues long-term debt in period 0 and there is no short-

term debt to be rolled over in period 1. Yet the government still finds it optimal to levy

taxes in period 1 (to smooth tax collection across periods). The tax collection in period

1 is then invested in short-term bonds that are rolled over at interest rate i1. In this case,

the government is a net debtor in long-term bonds and a saver in short-term bonds. Thus,

in evaluating whether w0 increases the marginal benefit of inflation, one needs to take into

account that while inflation reduces the real value of the long-term debt (because of the BSI),

it reduces the return of the assets (short-term nominal bonds) the government is holding on

its balance sheet. The condition x0 <
1+ 1

2
κ−1

1−β+κ−1 guarantees that the former force is always

stronger so that the marginal benefit of inflation is increasing in w0. Now consider the case

in which x0 ̸= 1. When x0 > 1, the ROI reinforces the TSI (because the government enters

the period with short-term assets), while when x0 < 1, the ROI reinforces the BSI.

To sum up, a lower x0 always triggers expectations of higher inflation and a lower interest

rate in period 1—and this is the central insight of our paper—while the effect of a higher w0

depends on the overall balance sheet position of the government. The MPE for periods 1 and

2 can be used to formalize a model of QE in period 0, the subject of Sections 2.3.3 and 2.3.4.

2.3.3 The Short Run: Quantitative Easing as Comparative Statics in Policy

Consider a situation in which a shock in period 0 triggers the ZLB. Suppose that monetary

and fiscal policies are set in periods 1 and 2 according to the MPE described in Sections 2.3.1

and 2.3.2. Consider now a policy regime in period 0 in which i0 = 0 and there is some fixed

(real) amount of government nominal debt; that is, D0 = B0

P0
+ L0

P0
= D̄. Now consider a

policy in which in period 0 the government shortens the duration of its outstanding debt via

open market operations. QE in period 0 can now be thought of as comparative static: what

happens if the government purchases, say, $100 billion worth of long-term government bonds

with short-term bonds (or reserves) via QE, holding total government debt, D̄, constant? The

magnitude of QE directly maps onto the state variables x0 and, to a smaller degree, w0. We

find this thought experiment to be interesting for it corresponds to the type of question policy

maker ask themselves when deciding on the size of QE at a given point in time.
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Figure 5: Impulse responses at the zero lower bound under various maturities of debt issued
in the short run with otherwise optimal monetary and fiscal policy

Note: The figure shows the impulse response of output, inflation, the nominal interest rate, and taxes when

a negative demand shock makes the zero lower bound binding in the short run. The model is solved for two

different maturities of debt (x0) issued in the short run under discretion (indicated by different colors), holding

fixed the stock of debt issued (D̄). The figure also shows the results for the model with optimal monetary and

fiscal policy under commitment and the model in which the government deviates in periods 1 and 2 from the

path of the nominal rate and inflation under x0 = 0.

While it is clear enough that QE reduces the duration of the government debt—that is,

it lowers x0—the effect on w0 is less obvious. Since i0 = 0 and there is perfect foresight

after the realization of the shock in period 0, simple manipulations yield w0 = (1+i1)D̄
1+i1(1−x0)

.

This expression says that a lower x0 is associated with a smaller w0 for a given i1. The

reason is that w0 measures the maturity value of debt at time 0, which includes future interest

payments. Less long-term debt implies lower interest rate payments and thus lower maturity

value in period 0, unless there is a simultaneous increase in i1 to compensate. In numerical

experiments, however, this effect is trivial, as we will see.

Figure 5 shows the solution of the model for an illustrative QE policy and compares it with

some alternative policies. First, the yellow line shows the equilibrium under the assumptions

that x0 and w0 are fixed at time 0 at the levels that would be optimal in the absence of
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the ZLB shock—that is (x0, w0) = (1.31,0.723)—and that there is an MPE in periods 1 and

2. Next, the blue line shows the equilibrium for optimal fiscal and monetary policies under

commitment.22 This commitment, however, is not credible in an MPE when the state variables

are (x0, w0) = (1.31,0.723), as depicted by the yellow line.

What can the government do? The green line shows the effect of QE whereby the gov-

ernment shortens the maturity structure of debt so that x0 = 0 (thus issuing only one-period

debt) while keeping D0 fixed. This implies a trivial adjustment of w0 from 0.723 to 0.721.

Comparing the yellow with the green line, the solution illustrates that QE brings about a

lower interest rate and a higher inflation rate in period 1; this force arises exclusively because

of the shortening of the duration of debt. The expectation of this outcome then reduces the

drops in output and inflation in period 0. QE, in other words, enables the government to

credibly commit to a monetary expansion.

To understand why QE makes a commitment to low future interest rates credible, it is

helpful to understand the cost of deviating from the loose monetary policy implied by this

policy in period 1. The dashed-red line, labeled “Reneging” in Figure 5, shows the evolution

of each variable if, in period 0, the government announces a plan to keep future interest rates

low in line with the solution given by the green line (assuming the private sector believes

this announcement), implements QE so that (x0, w0) = (0,0.721), but then deviates from the

plan by choosing the equilibrium that had been optimal in the absence of QE (that is, the

MPE associated with (x0, w0) = (1.31,0.723)). As in the analysis of the deflation bias, the

government obtains better outcomes for output and inflation via this deviation strategy.

What is new is the effect the policy has on taxation: the government needs to raise taxes

by more than it otherwise would have (compare the dashed-red line tax path to the green

line’s path).23 The reason for the tax cost of reneging on the the optimal discretionary policy

is twofold. First, the lower rate of inflation increases the real value of debt. This is the balance

sheet incentive. Second, the government needs to pay a higher interest rate on the debt it is

rolling over from period 1 to period 2. This is the rollover incentive.

The effect of QE can be characterized analytically if we assume that QE operates only

via x0 (thus abstracting from its effect on w0, which is quantitatively trivial, as we have just

seen), as given in the following proposition:

Proposition 3 If (i) there is a policy regime with fixed w0 in period 0, (ii) there is an MPE

in periods 1 and 2, and (iii) the policy function Π1(w0, x0) is approximated using Proposition

22Section 4.1 further discusses the solution under commitment, where, in particular, the maturity structure
of government debt in period 0 is irrelevant.

23In computing the path for taxes when the government reneges, one can only pin down the sum of taxes
in periods 1 and 2. We assume taxes are the same in both periods.
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2, then

∂Y0
∂x0

= −

(
λT

1 + λy

κ2

)
β−1(1− β + κ−1)κ−1(2Π1 − 1)

w2
0

2
ξ0 < 0.

Proof. From (3) we obtain Y0 = β−1Y1Π1ξ0 = β−1κ−1(Π1−1)Π1ξ0. Using (28) to approximate

Π1 and taking the partial derivative with x0 yields the result.

Proposition (3) says that when the ZLB is binding in period 0, a reduction in the maturity

of government debt in period 0 leads to an increase in output for a given w0. This effect

is higher the larger is the value of outstanding debt; it is increasing in the degree of tax

distortions (λT ); and it is stronger the higher is the degree of nominal rigidity. This statistic,
∂Y0

∂x0
, can be used to answer an important policy question: what is the output effect at the ZLB

of a certain amount of QE? The main objective of Section 3 is to obtain a quantiative answer

to this question.

2.3.4 The Short Run: Quantitative Easing as an Optimal Time-Consistent Policy

The MPE in the short run provides an interpretation of QE as an optimal time-consistent

policy for government debt and its maturity. Period 0’s government solves

V 0(w−1, ξ0) = max
Π0,T0,Y0,i0,R0,x0,w0

{
−1

2
(Π0 − 1)2 − 1

2
λTT

2
0 − 1

2
λy
(
Y0 − Ȳ

)2
+ βV 1(x0, w0)

}
subject to

x0w0

1 +R0

+
(1− x0)w0

1 + i0
=
w−1

Π0

− T0,

1

1 + i0
= β

Y0
Ȳ 1(x0, w0)

1

Π̄1(x0, w0)

1

ξ0
, i0 ≥ 0,

1

1 +R0

= β2Y0
Ȳ

1

Π̄1(x0, w0)

1

Π̄2(W̄ 1(x0,w0))

1

ξ0
, and

(Π0 − 1) = κ
(
Y0 − Ȳ

)
,

where V 0(w−1, ξ0) is the value function of the government and the state variables are w−1 and

ξ0. Moreover, V 1(x0, w0) is given by (20), and the expectation functions—Π̄1(.), Ȳ 1(.), W̄ 1(.),

and Π̄2(.)—are given by (22) and (14).24

The green line in Figure 6 shows the solution for the MPE if policy is conducted optimally

and the ZLB is binding in period 0. The yellow line shows the solution for optimal policy

24We take optimality conditions for all variables, other than x0 and w0, and then evaluate the objective
numerically on a grid of x0 and w0 in Mathematica, taking as given the solution derived for periods 1 and 2.
We check for a global optimum.
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Figure 6: Impulse responses under optimal quantitative easing and other policies at the zero
lower bound

Note: The figure shows the responses of output, inflation, the nominal interest rate, and taxes when a negative

demand shock makes the zero lower bound binding in the short run. The yellow line shows the solution for

optimal policy under commitment. The green line shows the solution for optimal policy under discretion—that

is, optimal quantitative easing. The purple line shows the solution for optimal policy under discretion with

the maturity of debt in period 0 set to the value that would be optimal with no shock.

under commitment. The purple line shows the solution under discretion if the government

keeps the maturity of the debt fixed at time 0 at what would have been optimal in the absence

of the shock; x0 = 1.31. In this case, the government is allowed to optimize over w0; we label

this constrained discretion.
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Figure 7: Government balance sheet dynamics under discretion at the zero lower bound

Note: The figure shows the evolution of the government balance sheet when a negative demand shock makes the

zero lower bound binding in the short run. Panel (a) shows the solution for optimal policy under discretion—

that is, optimal quantitative easing. Panel (b) shows the solution for optimal policy under discretion with

the maturity of debt in period 0 set to the value that would be optimal with no shock—that is, constrained

discretion.

Constrained discretion is qualitatively similar to the optimal monetary policy under dis-

cretion when λT = 0. In contrast, the fully optimal time-consistent solution, in which x0 is

chosen freely, almost completely replicates the optimal-commitment solution (yellow versus

green line) in terms of output, inflation, and the interest rate.25 In the fully optimal solution,

the government reduces maturity substantially to x0 = −1.2 instead of keeping it at 1.31,

which was the optimal duration in the absence of the ZLB.26

Figure 7 shows the balance sheet position of the government—that is, the maturity value of

debt (w−1, w0, W1) and the long- and short-term debt issued (b0, l0, b1). Panel (a) shows the

balance sheet positions of the government when it structures both the level and composition

of its debt optimally—that is, under optimal discretion. In period 0, the government issues

only short-term debt and buys long-term debt from the private sector, thus closely replicating

the commitment solution. Panel (b) shows the asset position of the government when the

maturity composition is kept fixed in period 0 as if there were no shock, while the level of

25The solutions will not coincide fully, however. Under commitment, there will never be inflation in period
2, while in the MPE, there will always be some inflation in period 2 because of inherited nominal debt. There
is also a more pronounced difference in taxes, which further shows that the solutions are not exactly the same.
As is natural, for taxes, they are higher in period 1 under optimal discretion compared with commitment.
While our overall conclusions are independent of parameterization, in Figure A.4 in Appendix A.7.3 we present
an example in which the differences are bigger for interest rates and inflation in all periods.

26The negative value of x0 provides an interpretation of some of the unconventional credit policies by the
Federal Reserve, often referred to as QE1. A negative x0 implies that the central bank is printing short-term
reserves and buying long-term privately issued bonds. To the extent that the duration of the asset the Federal
Reserve took on its balance sheet during the credit-easing operation is longer than that of reserves (which are
fully short term), these policies change the inflation incentive of the government via the term structure.
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debt is chosen optimally—that is, under constrained discretion. The government issues long-

term debt to purchase short-term debt, which is optimal only in the absence of the shock, as

it eliminates the inflation bias created by nominal government debt in period 1.

3 A Quantitative Model

This section considers a standard New Keynesian model that has been subjected to quanti-

tative evaluation and can be parameterized based on the existing literature (see, for example,

Woodford (2003) and Gali (2007) for textbook treatments). The standard model is extended

to include the costs of taxation and long-term government debt. Since the cost of taxation is

the key new parameter, it is the main focus of the calibration and sensitivity analyses.

3.1 Environment

A representative household maximizes

Et

∞∑
t=0

βt[u (Ct) + g(Gt)− v(Ht)]ξt, (30)

subject to a sequence of budget constraints

PtCt +Bt + StLt ≤ NtHt + (1 + it−1)Bt−1 + (1 + ρt−1Qt)Lt−1 − PtTt +

∫ 1

0

Zt(i)di, (31)

where we use the same notation as in the simple model. Here, u(.) and g(.) are both increasing

and concave in their arguments while v(.) is increasing and convex. Ct is private consumption,

and Gt is government consumption, where both are Dixit-Stiglitz aggregates of a continuum

of varieties of goods.

Bt is a one-period riskless nominal government bond while Lt is a perpetuity nominal

government bond with price St and decay factor ρt. A perpetuity issued in period t pays ρjt

dollars j + 1 periods later for some decay factor 0 ≤ ρt < β−1. At time t, the household can

sell its existing perpetuities, Lt−1, which have a decay factor ρt−1, at price Qt. The model

thus incorporates debt of arbitrary duration. A value of ρt = 0, for example, implies that Lt

reduces to a one-period short-term bond, while ρt = 1 corresponds to a classic consol bond of

infinite duration. More generally, with stable prices, the duration of a perpetuity with decay

factor ρt is (1− βρt)
−1.

The maximization problem and optimality conditions are standard, but with an additional

pricing condition for existing and new perpetuities. The standard Euler equation, which prices

one-period short-term bonds, is reported below in (32) while the asset-pricing equations for
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current and existing long-term perpetuities are shown in (33).

A continuum of monopolistically competitive firms, indexed by i, produce varieties of

goods using a production function that is linear in labor, yt(i) = Ht(i). Following Rotemberg

(1982), we model firms as facing a cost of changing prices given by d
(

p(i)
pt−1(i)

)
, where d′ > 0

and d′′(.) < 0. The firm maximizes expected discounted profits facing a subsidy τ that is

set so that steady-state output is efficient. The firms’ problem, after we impose a symmetric

equilibrium, implies the nonlinear Phillips curve reported below in (34).

As in Barro (1979), there is an output cost of taxation, captured by the function s(Tt).

Total government spending is Ft = Gt+s(Tt).
27 The output cost of taxation implies that more

taxation directly reduces government spending, Gt, that contributes to welfare. For simplicity,

total government spending is assumed to be constant so that Ft = F̄ .28

At the beginning of each period t, the government buys all existing debt (perpetuities that

have duration ρt−1) at price Qt and issues new debt of duration ρt at price St. The government

issues no short-term bonds in equilibrium so that Bt = 0. If we define lt =
Lt

Pt
and Πt as gross

inflation, the government budget constraint is (35). Government policy—which is the choice

of the tax Tt, interest rate it, debt lt, and maturity of government debt ρt—is also constrained

by the ZLB, as reported in (32), and the resource constraint, written in (36).

The equilibrium conditions and constraints based on the problems described above are

1

1 + it
= Et

[
β
uc(Ct+1)ξt+1

uc(Ct)ξtΠt+1

]
, it ≥ 0, (32)

St = Et

[
β
uc(Ct+1)ξt+1

uc(Ct)ξtΠt+1

(1 + ρtSt+1)

]
, Qt = Et

[
β
uc(Ct+1)ξt+1

uc(Ct)ξtΠt+1

(1 + ρt−1Qt+1)

]
, (33)

θYt [uc(Ct)− vy(Yt))] ξt + uc(Ct)ξtd
′ (Πt)Πt = Et [βuc(Ct+1)ξt+1d

′ (Πt+1)Πt+1] , (34)

Stlt = (1 + ρt−1Qt) lt−1Π
−1
t +

(
F̄ − Tt

)
, and (35)

Yt = Ct + F̄ . (36)

27Unlike in the simple model, we here assume that the tax-collection costs are in terms of the final good
rather than labor.

28If government is also allowed to choose Ft, this introduces one additional policy instrument. This does not,
however, change the fact that taxes have a welfare effect via diverting resources away from welfare-contributing
government consumption, Gt, to tax collection, which contributes nothing to utility. Eggertsson (2006, 2008)
considers the case in which both Ft and Tt are optimally chosen in a model with one-period debt. Rather
than assuming Ft = F̄ , the model could alternatively be written assuming that Gt = Ḡ and would yield
identical results. In either case, the interpretation is that taxes have a negative effect on welfare, as they
require resources to “produce” the tax revenues. In the former case, higher taxes result in lower government
spending, Gt, and lower welfare. In the latter, higher taxes result in lower private consumption, Ct, and lower
welfare. We thank an anonymous referee for stressing to us the importance of this alternative interpretation.
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3.2 Markov Perfect Equilibrium and Solution Method

Define the expectation variables fE
t ≡ Et

[
uC(Ct+1)ξt+1

Πt+1

]
, gEt ≡ Et

[
uC(Ct+1)ξt+1

Πt+1
(1 + ρtSt+1)

]
,

jEt ≡ Et

[
uC(Ct+1)ξt+1

Πt+1
(1 + ρt−1Qt+1)

]
, and hEt ≡ Et [uC (Ct+1) ξt+1d

′ (Πt+1)Πt+1]. An exami-

nation of conditions (32)-(36) reveals that the physical state variables of the model at time t

are ρt−1, lt−1, and the exogenous shock ξt. The assumption of MPE implies that expectations

are only a function of the state variables

fE
t = f̄E(lt, ρt, ξt), g

E
t = ḡE(lt, ρt, ξt), j

E
t = j̄E(lt, ρt, ξt), and h

E
t = h̄E(lt, ρt, ξt), (37)

where f̄E(.), ḡE(.), j̄E(.), and h̄E(.) are unknown functions.

The government’s problem is

V (lt−1, ρt−1, ξt) = max
it,Tt,lt,ρt

[U (.) + βEtV (lt, ρt,ξt+1)] (38)

subject to

1 + it =
uc(Ct)ξt
βfE

t

, it ≥ 0, (39)

St =
1

uc(Ct)ξt
βgEt , Qt =

1

uc(Ct)ξt
βjEt , (40)

hEt = θYt [uc(Ct)ξt − vy(Yt)] ξt + uc(Ct)ξtd
′ (Πt)Πt, (41)

Stlt = (1 + ρt−1Qt) lt−1Π
−1
t +

(
F̄ − Tt

)
, and (42)

Yt = Ct + F̄ + d (Πt) , (43)

where fE
t , g

E
t , h

E
t , and j

E
t are given by (37) and V (lt−1, ρt−1, ξt) is the value function.

An equilibrium is defined as a collection of stochastic processes for the endogenous vari-

ables, where the processes solve both constraints (32)-(36) and the optimality conditions of

the government’s problem (38). The optimality conditions, reported in Appendix C.4, contain

derivatives of the expectation functions, such as f̄E
l and f̄E

ρ . The expectation functions are

unknown and hence so are their derivatives. The simple model was solved backward from a

terminal period in which there were no expectations of the future. The solution of the terminal

period could then be used to construct expectations for the second-to-last period, which in

turn could be used for the period before. In an infinite-horizon model, this is not feasible.

The solution method follows the literature in making the assumption that the expectation

functions are smooth and differentiable (see, for example, Soderlind (1999) and Klein et al.

(2008)). This allows for an approximation of the expectation functions by using perturbation

methods, which rely on the implicit function theorem, and the method of undetermined coef-
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ficients. The solution method is discussed in Appendices C.7 and C.8. A key simplification is

that the model is assumed to be efficient in steady state for positive debt at any given maturity

(the value of debt can be taken from the data).29 This allows for a full characterization of the

steady state in the MPE in closed form, which is used as an approximation point.

3.3 Thought Experiment

The thought experiment here is the infinite-horizon analog to the thought experiment in

Section 2.3.3. The shock follows a two-state Markov process with an absorbing state, as in

Eggertsson and Woodford (2003). In period 0 there is an unexpected shock so that ξ0 < ξ̄.

In the following periods, there is a probability 1− µ that the shock will revert back to steady

state so that ξ1 = ξ̄ and a probability µ that the shock will remain in its low state so that

ξ1 = ξ0 = ξS < ξ̄. If the shock reverts to steady state, it stays there forever. If the shock

remains, then it behaves exactly the same in the following period; that is, it has a probability

1−µ of reverting to steady state and probability µ of remaining so that ξ2 = ξ1 = ξ0 < ξ̄. The

shock takes the same structure in all future periods. This means that the expected duration

of the shock is 1
µ
quarters. The stochastic period in which the shock returns to steady state is

denoted by K. The period prior to that, t < K, is the short run (denoted by S), while t ≥ K is

the long run. The shock is chosen to be large enough so that the ZLB is always binding in the

short run. In an approximate equilibrium, the shock is defined as res = r̄ + σ−1(ξ̂t − Etξ̂t+1),

interpreted as the real interest rate needed for output to reach its flexible price level.

In the short run—that is, t < K—policy is (possibly) suboptimal as in Section 2.3.3. This

allows for a straightforward match to particular QE episodes observed in the US in the Great

Recession. In the long run, in which t ≥ K, policy is set according to the MPE. QE shortens

the duration of government debt in the short run—that is, it leads to a smaller ρt—holding

fixed the total value of the debt issued (Stlt = D̄). This means outcomes can be compared

with empirical estimates from asset markets during QE episodes as a test of the model.

Consider a variable x, and denote by ∆x the change in this variable in response to QE. A

QE episode is mapped onto a reduction of ∆ρ and a resulting change in variables of interest,

∆x. We can compare the model prediction to the data, which we do in Section 3.5.3.

29This allows us to characterize the steady state in closed form in the MPE. This is a major simplification
relative to Klein et al. (2008), who rely on nontrivial approximations to characterize the steady state. Leeper
et al. (2019) similarly consider a time-consistent equilibrium in the New Keynesian model with long-term debt
in which the steady state is not efficient, approximating it using collocation methods.
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3.4 Parameterization

The model is fully parameterized, with choices of parameters (discussed in detail below),

related to (i) fiscal policy and QE (ρ,∆ρ, ψ, b̂S); (ii) structural parameters of the model from

the private sector (β, κ, σ); (iii) the size and persistence of the shock (reS, µ); and (iv) the

welfare-based weights the government puts on variability in output and taxation (λy, λT ). We

discuss calibration of each in turn, with special attention to λT , which is new.

3.4.1 Calibration of Baseline Parameters

The fiscal policy/QE parameters are directly backed out of the data. The model assumes a

consolidated government budget constraint so that, for government debt, the relevant measure

is all government debt held by the public (thus, government debt held by the Federal Reserve

is netted out). Reserves issued by the Federal Reserve are treated as short-term government

debt. The duration of the consolidated government’s debt is shown in Figure C.8 in Appendix

C.9.1, where different phases of QE, termed QE1, QE2, and QE3, are discussed.30 The baseline

QE experiment is QE2, which started on November 2010.31 The baseline maturity is 16.87

quarters—the level at the beginning of QE2—resulting in ρ = 0.9502. The reductions in

maturity due to QE2 and QE3 are shown in Table 1. See Appendix C.9.1 for details on the

construction of these statistics.

In addition to debt duration and its change due to QE2 (that is, ρ(pre-QE2) and ∆ρ(QE2)),

two other parameters are directly calibrated in Table 1: ψ and b̂S. The parameter ψ ≡ lS
T
= D

T

is the steady-state level of the debt-to-taxes ratio. The long-run average of the ratio of the

market value of debt to output is computed using data from the Federal Reserve Bank of

Dallas, while NIPA is used to measure the ratio of taxes to output, yielding ψ = 7.2.32 Debt

in the short run, b̂S, is 30% above its steady-state value based on Dallas Fed data.33

The parameters β, κ, and σ are taken from Eggertsson and Woodford (2003), as shown

in Table 1. The model implies that λy = κ/θ, where θ is the elasticity of substitution across

30QE3 is taken to be the sum of what is commonly referred to as QE3 and the Maturity Extension Program;
see Appendix C.9.1.

31The reason why QE2 serves as the baseline calibration is that it only included purchases of long-term
government bonds. Thus it arguably captures well the basic force the paper formalizes. Meanwhile, QE1
included purchases of various private securities, which is why Bernanke (2009) defines QE1 as credit easing
and QE2 as quantitative easing. A credit-easing episode is better modeled by modeling frictions in the credit
markets, as done, for example, in Gertler and Karadi (2011, 2012) and Del Negro et al. (2017). Consistent
with this perspective, Krishnamurthy and Vissing-Jorgensen (2011) and others find that QE1 largely operated
via risk premia, while QE2 instead operated also via expectations of lower future federal funds rates.

32We use the average of these two series from 1951-III to 2010-III.
33This is calculated by considering debt/GDP in 2008-IV compared with its average value from 1951-III to

2010-III. Moreover, as mentioned previously, we adjust the quantity of debt after QE2 to keep the market
value of the debt fixed during the QE2 intervention (it has to be adjusted to 0.297 in our baseline calibration).

27



Table 1: Calibrated/estimated parameter values in the quantitative model

Parameter Value Parameter Description

β 0.99 Discount factor
σ 0.5 Scaled IES
κ 0.02 Slope of Phillips curve
λy 0.029 Weight on output
λT 0.021 Weight on taxes
reS −0.01 Shock size
µ 0.88 Shock persistence
ρ(pre-QE2) 0.9502 Baseline debt maturity
∆ρ(QE2) 0.0024 Change in debt maturity
∆ρ(QE3) 0.0072 Change in debt maturity
ψ 7.2 Debt-to-taxes ratio

b̂S 0.30 Initial debt

varieties of goods. θ is chosen to be 11, such that it is consistent with a 10% markup.

This target for markup is within the range of estimated values in De Loecker and Warzynski

(2012).34 The size of the shock ret and its persistence are chosen to match the fall in real GDP

and inflation at the start of the 2008 crisis in the US using the values for these targets from

Del Negro et al. (2017) (-7.5% and -2.5% respectively). The resulting values are in Table 1.

The parameter that remains to be chosen is λT . This parameter is central to the results,

and there is little guidance in the literature on how to choose it. Accordingly, it is the main

focus of the calibration and the sensitivity analysis.

3.4.2 Calibration of Tax Distortions (λT )

The fundamental role λT plays in the model is to determine the relative response of inflation

and taxes to fiscal shocks that increase debt. To illustrate how we use this model property,

together with an estimated empirical counterpart, to calibrate λT , we proceed in four steps.

First, Figure 8 shows the model’s impulse responses of inflation and taxes to a fiscal shock

for the benchmark parameterization of λT .
35 In response to a fiscal shock that increases debt,

both inflation and taxes increase and then gradually return back to steady state. The shaded

areas below the impulse responses represent the total response of inflation and taxes up to

sixteen quarters. This is the standard horizon over which impulse responses are cumulated in

the empirical literature on fiscal policy (see Ramey and Zubairy (2018), or RZ hereafter).

34For instance, Table 2 in De Loecker and Warzynski (2012) shows that depending on the specification,
estimated markups vary from 3% to 28%.

35Our interpretation of a fiscal shock here is a one-time increase in fiscal outlays, which results in an increase
in debt if we keep debt maturity fixed.
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Figure 8: Impulse responses outside of the zero lower bound

Note: The figure shows the impulse responses of inflation and taxes outside the zero lower bound to a shock

that increases debt. This is for the benchmark parameterization in Table 1.

The calibration strategy of λT relies on the model property that the higher is λT , the

more the government responds to a fiscal shock by increasing inflation relative to taxes in the

impulse responses shown above.36 This is shown in Figure 9, which plots the ratio

Dπ,T (λT ) =
IRFπ(16)

IRFT (16)
(44)

as a function of λT while using the benchmark values for all other parameters. Here, IRFπ(16)

and IRFT (16) represent the shaded areas in Figure 8. Figure 9 shows that the higher is λT ,

the more the government relies on inflation relative to taxes to pay down debt. This theoretical

moment is then a natural target with which to identify a value for λT . Point B corresponds

to the benchmark calibration reported in Table 1 for λT , which is obtained by matching (44)

to the empirical counterpart of this statistic, which we now turn to.

The empirical counterpart to (44) is generated by replicating and extending the empirical

analysis of RZ. RZ collect data on inflation, debt, taxes, and government spending for the

period 1889–2018 in the US. In contrast, we truncate our data to end in 2008 to focus on

evidence outside of the 2008 crisis.37 RZ focus on the effect of fiscal shocks on output using

local projection methods.38 We adapt their analysis to analyze cumulative impulse responses

for taxes and inflation in response to a fiscal shock—that is, the empirical objects ÎRF π(16)

and ÎRF T (16). We then take the ratio of these impulse responses to construct the empirical

36This can be seen analytically in period 2 of the simple model, as (12) rewritten gives (Π2 − 1)Π2 = λTT
2
2 .

37We truncated the data based on feedback from referees so that it strictly covers the pre-ZLB period. The
results do not change much if we instead use the whole period.

38In their analysis, they use Ramey’s (2011) military-news variable and Blanchard and Perotti’s (2002)
shock series as instruments for government spending in local projection regressions; see their Equation (3).
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Figure 9: Identification and estimation of tax-smoothing parameter

Note: The figure shows how λT is identified and estimated using the response of inflation relative to taxes in

the model and matching it to the empirical counterpart. Point B corresponds to the point estimate of λT .

target D̂π,T , the point estimate of which is 0.162 and the standard error (σ̂) of which is 0.085.

Appendices B.1-B.3 contains more details on the estimation, including how we construct the

standard error for the ratio of impulse responses using the delta method.

Then we choose λT so that (44) in the model matches this empirical target; that is, we

back out the λT that solves Dπ,T (λT ) = D̂π,T . As shown in Figure 9, there is a solution for

λT that solves this equation. Point B is thus the point estimate for λT , as reported in Table

1. Points A and C correspond to values for λT estimated by matching +/− one standard

deviation from the point estimate of D̂π,T , which we use in our main sensitivity analysis later.

3.5 Main Results

3.5.1 Dynamic Paths

The blue line in Figure 10 shows the evolution of the main variables of interest in the bench-

mark scenario in which government debt and its duration are fixed throughout the ZLB and

an MPE is in place once the shock has subsided. In response to the shock, output and infla-

tion fall by 7.5% and 2.5% respectively, as targeted in the calibration. The figure shows the

realization of a shock that reverts back to steady state in period 8, the expected duration of

the shock. Once the shock reverts to steady state, the government raises the interest rate to

stabilize inflation and output at a level slightly above steady state because government debt

is 30% above steady state.

The red line in Figure 10 shows the optimal monetary and fiscal policy under commit-

ment.39 In response to the shock, the government commits to a lower future interest rate.

39It can be shown, using a similar argument as that in the simple model, that under monetary and fiscal
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Figure 10: Impulse responses under various maturities of debt at the zero lower bound

Note: The figure shows the impulse responses of output, inflation, the nominal rate, and the real rate when a

negative demand shock makes the zero lower bound bind initially and the shock reverts back to steady state

in eight periods. The model is solved for three different debt durations at the zero lower bound, indicated by

different colors, holding fixed the value of debt issued. This illustrates quantitative easing as a comparative-

static experiment. The figure also shows, for comparison, the model with optimal monetary and fiscal policy

under commitment.

While the discretionary central bank raises the interest rate in period 8, the central bank un-

der the optimal-commitment policy raises rates six periods later. As shown in the lower-right

panel, this brings about a lower real interest rate during the period of the negative shock,

which mitigates the recession greatly, with output only dropping by about 2%. Meanwhile,

inflation stays within 50 bp of zero throughout the crisis.

While the optimal-commitment solution represents the best equilibrium, a discretionary

government, as portrayed by the blue line, is unable to credibly commit to keeping the interest

rate low once the shock subsides because it has an incentive to renege on its previous promises

and raise interest rates. This is where QE comes in, as in the simple model.

commitment, the maturity structure of debt is irrelevant even in this quantitative model. The commitment
solution was computed using the approximation-based toolkit of Eggertsson et al. (2019), which is based on
Eggertsson and Woodford (2003). The properties of the approximation at the ZLB in this class of models are
discussed in Eggertsson and Singh (2019).
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The yellow line shows the solution if the government reduces the duration of debt as in

QE2. This results in a commitment to lower the nominal interest rate in the future relative

to the blue line, thus more closely corresponding to the optimal commitment. This is made

clearer via the real interest rate (shown in the fourth panel), which is what determines output.

By shortening the maturity of outstanding debt, the government is able to commit to lower

real interest rates once the shock is over, which stimulates output during the period in which

the ZLB is binding. Hence QE is an effective commitment device and renders low future

interest rates credible. The green line in the figure shows the effect of QE3, which is larger.

To understand why a shorter maturity brings about a commitment to lower future interest

rates, and to compare with the simple model, it is helpful to make a few additional assump-

tions, even if this glosses over some features of the solution discussed in the next paragraph.

The endogenous state variables are lt−1 and ρt−1. For simplicity, consider the case ρt = ρt−1, so

that St = Qt. Furthermore, contemplate a small deviation from steady state so that in period

t+ 1 the interest rate is back to steady state, in which case 1 + it+1 = β−1 and St =
1

1−βρt−1
.

Making the simplification that β = 1, the budget constraint (35) can then be written as

lt =
lt−1

Πt︸︷︷︸
Balance sheet incentive

+ it (1− ρt−1)
lt−1

Πt︸ ︷︷ ︸
Rollover incentive

+
1

St

[F − Tt]︸ ︷︷ ︸ .
Tax-smoothing incentive

(45)

That is analogous to (23) in the simple model, where the balance sheet and rollover incentives

are defined. The first term on the right-hand side of (45) corresponds to the balance sheet

effect, which is independent of the duration of government debt, while the second term corre-

sponds to the rollover incentive, but x0 has been replaced by ρt−1. The last piece corresponds

to the tax-smoothing incentive as before. The logic is thus the same in the two models.
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Figure 11: Transition dynamics of the government balance sheet

Note: The figure shows the dynamics of debt and debt duration once the shock is over.
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Finally, Figure 11 shows how the transition dynamics of debt and duration are affected by

QE once the shock is over. As the figure reveals, once out of the ZLB, the government reduces

the debt back to its steady state. Note that as the debt decreases, the government lengthens

the duration of its debt, an issue discussed towards the end of Section 4.4.

3.5.2 Output Effects of Quantitative Easing

As a summary of the macroeconomic effects of QE shown in Figure 10, Table 2 shows the

output effects of QE in the benchmark calibration. Output at the ZLB increases by about

1.65 percentage points for QE2 and 4.83 percentage points for QE3.

Table 2: Output effects of QE2 and QE3 under baseline calibration

Model Specification ∆Output, QE2 ∆Output, QE3

Baseline Calibration 1.65% 4.83%

3.5.3 Untargeted Moments

We can now ask: how well does the model account for empirically estimated financial-market

behavior in response to QE? To assess this, we compare the model prediction of the changes in

the long-term interest rate and in expected inflation to well-known empirical estimates. This

is an out-of-sample test, as our calibration did not target any estimates of financial-market

effects of QE taken from the literature.

The main comparison is to the estimated effects of QE2 in Krishnamurthy and Vissing-

Jorgensen (2011, or KVJ hereafter). Using fed funds futures, they estimate a reduction of

∆i (8) = −16 bp in the short-term interest rate’s eight-quarters-ahead yield and an increase

of ∆π (40) = 5 bp in expected inflation over ten years. This empirical estimate is particularly

attractive for our analysis since KVJ argue that the changes in the fed funds futures are due

to signaling by the Fed about future interest rate policy. This is the mechanism the model is

designed to capture. These out-of-sample predictions are summarized in Table 3. Since none

of the parameters were chosen with this in mind, the match is less than perfect.

A few points are worth highlighting. The way the shock is chosen (that is, its persistence)

implies an expected ZLB episode of 8.4 quarters, which is in the range of surveyed expectations

of the duration of the ZLB in this period (see, for example, Del Negro et al. (2017)). As already

stressed, we pick the shock parameters to generate a recession and drop in inflation and not

to match the expected duration of ZLB.

The model accounts for about two-thirds of KVJ’s estimated fall in two-year expected

future short rates in response to QE2. In addition, the model accounts for about a third
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Table 3: Untargeted data and model moments under baseline calibration

Untargeted Moments Data Model

Zero-lower-bound duration 6− 8 qt 8.4 qt

∆i(8), QE2 −16 bp −10.24 bp
∆i(40), QE2 −30 bp −11.2 bp
∆i(40), QE3 −46 bp −34.9 bp
∆π(40), QE2 5 bp 14.34 bp

of the fall in ten-year Treasury yields as a result of QE2 and about two-thirds of the fall in

ten-year Treasury yields that Ehlers (2012) estimates resulted from QE3.40 Finally, the model

overshoots KVJ’s estimated ten-year-ahead increase in inflation expectations due to QE2.

To summarize, the model accounts fully for the rise in inflation expectations due to QE2

and accounts for roughly a third to two-thirds of the fall in long-term yields due to QE2 and

QE3. Taken at face value, this suggests that alternative theories, such as those based on

portfolio rebalancing or financial frictions, may account for the rest of the effects on yields.

3.6 Sensitivity Analyses

3.6.1 Bounds on Output Effects

We consider sensitivity of the results to reasonable variation in λT by reporting the results of

assuming that λT is +/- one standard deviation from the estimated value used in the baseline

calibration. That is, it corresponds to points A (labeled λhighT below) and C (labeled λlowT

below) in Figure 9. The output effects implied from this analysis are shown in Table 4.

Table 4: Output effects of QE2 and QE3 with different degrees of tax smoothing

Model Specification ∆Output, QE2 ∆Output, QE3

Baseline λT 1.65% 4.83%

λhighT 2.17% 5.74%
λlowT 0.26% 0.90%

Table 4 shows that for the lower value of λT , the output effects of QE2 and QE3 are smaller

than in the benchmark, at 0.26 and 0.9 percentage points respectively. Meanwhile, for the

higher value of λT , the output effects of QE2 and QE3 are higher, at 2.17 and 5.74 percentage

points respectively. The intuition for why QE has a smaller effect for a lower value of λT is

40The ten-year-yield effects of QE2 estimated by Ehlers (2012) are not pure signaling effects; they include
a term-premia effect. Thus, it was to be expected that our model would not match that moment closely.
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that for low values of this parameter, as we saw in Figure 9, the government relies relatively

less on inflation and more on tax increases in order to pay down public debt.

This sensitivity analysis chooses reS to generate an output drop of 7.5%, but leaves inflation

free. The value of the persistence of the shock µ is unchanged as λT is changed, but recall

that µ maps onto the expected duration of the ZLB. This procedure then implies that as

λT changes, the model generates different inflation drops at the ZLB than that in the data.

Appendix C.9.2 documents this and also shows the responses of other key empirical moments.

3.6.2 Bounds on Output Effects Matching Inflation at the Zero Lower Bound

An alternative way of doing the sensitivity analysis with respect to λT is to recalibrate µ to

hit the 2.5% drop in inflation observed in the data. Doing so yields very high estimates for the

output effects of QE2 and QE3. In our view, however, these high estimates are hard to defend.

High values of λT imply, using this approach, that a very persistent expected slump is needed

to generate a 2.5% drop in inflation (high µ). The expected duration of the ZLB according to

this procedure is more than double the expected duration in the benchmark calibration. The

benchmark calibration implies an expected duration of the ZLB that is very close to market

expectations following 2008, while the alternative calibration does not, casting doubt on the

plausibility of the large estimated effects of QE using this procedure.

A more informative alternative is to keep µ fixed in line with market expectations and

vary λT around the point estimate, but recalibrate κ so as to match the drop in inflation at

the ZLB. Appendix C.9.3 reports the results of this procedure. The bottom-line is that this

alternative procedure results in higher output effects of QE for both high and low λT , but

they are less extreme than the previous procedure.

3.6.3 Bayesian Approach to Estimating λT

In Section 3.4.2, λT is estimated by equating the theoretical object Dπ,T (λT ) to D̂π,T , and

then computing the 68% confidence interval for λT by matching D̂π,T +/- one σ̂, the estimated

standard error of D̂π,T . The object Dπ,T (λT ), however, is highly nonlinear and a complicated

function of λT . It is not obvious a priori that if we characterize the entire distribution of D̂π,T

and back out the implied λT for each point in the distribution, that the resulting confidence

interval corresponds closely to the confidence interval we used for λT in the previous sections.41

We show below, however, that this alternative approach leads to almost identical inference.

Drawing from the distribution of D̂π,T and computing the implied distribution of λT has a

Bayesian interpretation described in detail in Appendix B.4. Figure 12 shows the estimation

results in terms of the posterior density of λT , where we depict the mean and the 68% credible

41We thank the editor for suggesting this alternative estimation procedure.
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Figure 12: Posterior distribution of the tax-smoothing parameter

Note: The figure shows the posterior distribution of λT using a Bayesian estimation approach.

sets with vertical lines.42 The mean is 0.022 while the 68% probability interval is (0.00787,

0.0351). These estimates are almost identical to those from our baseline approach reported

in Figure 9, where the mean is 0.021 and the 68% confidence interval is (0.00804, 0.03684).

These new estimates’ implied confidence interval for output effects of QE2 is also essentially

the same as that in Table 4, see Appendix B.4.

3.6.4 Alternative Calibration Strategies

Recalibrating to match financial-market effects. So far the strategy in the numerical

experiment has been to pick the parameters based on existing literature or the data and then

to pay special attention to the estimation of λT . We then asked, given the parameterization,

how well the model could account for financial-market estimates of QE, which we did not

directly target. An alternative way of parameterizing the model is to estimate directly more

parameters and ask, can the model fully account for the financial-market effects of QE for

parameter values that look reasonable? We address this question by calibrating (λy, κ) to

match KVJ’s estimates that QE2 led to ∆i∗ (8) = −16 bp and ∆π∗ (40) = 5 bp.43 In other

words, we estimate (λy, κ, λT , r
e
S, µ) to match five moments exactly: the drop in inflation

and output at the ZLB, the ratio of the inflation response to the tax response to match RZ’s

42A small fraction of draws, approximately 3.1%, imply negative values of D̂π,T . For those draws, we impose
the assumption that the estimated λT is zero. In the posterior density plot of λT , we do not depict the zeros
because it is continuous. In computing the mean and probability intervals, however, we do count the zeros.

43Note that λy = κ/θ, and thus we are estimating θ when estimating λy.
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evidence, and the effects of QE2 on yields and expected inflation to match KVJ’s evidence.

Appendix C.9.4 contains both the parameter values from this exercise as well as the model’s

predictions for the output effects of QE2 and QE3. Observe, that while we choose the param-

eters to match the change in financial-market prices as result of QE2 and QE3, the parameter-

ized model is needed to draw any inference about the effect these policies had on output. The

bottom-line is that parameter values are similar to our baseline calibration reported earlier

in Table 1 and can thus be interpreted to be relatively reasonable, since the parameters were

motivated by the outside literature. The output effects of QE are also very similar to those

in the baseline experiment where we did not match the empirically estimated effects of QE2

on yields and expected inflation (the effect of QE2 is 1.65% while that of QE3 is 5.15%).44

Sensitivity to structural model: A discounted Euler equation. A recent criticism of

the standard New Keynesian model is that current variables are overly sensitive to expectations

of future interest rate policy. This is dubbed the “forward guidance puzzle” by Del Negro et al.

(2015). McKay et al. (2016), Gabaix (2016), and Michaillat and Saez (2019) have suggested

a resolution to this puzzle: the consumption Euler equation has additional discounting, which

we denote by α, with α = 1 corresponding to the standard model. McKay et al. (2016) suggest

that the forward guidance puzzle is resolved with a value of α = 0.97. Using this as an input

in the model equation directly, we re-estimate the current model using the same procedure as

in last subsection. We find that the output effect of QE2 is now 1.46% while that of QE3 is

4.55%. Thus, the output effects of QE are only modestly reduced by this extension.45

4 Extensions and Discussion

4.1 Irrelevance of Quantitative Easing under Policy Commitment

We have shown that QE has a natural interpretation when the government cannot fully commit

to future policy, i.e., in an MPE. The first fundamental assumption driving this result is that

taxation carries some cost, as we made explicit in Section 2.2 by considering the case in which

λT = 0. A second fundamental assumption is that the government is unable to commit to

44The reason for similar output effects is that in the baseline exercise, the model generated smaller effects
on long-term yields but bigger effects on expected inflation compared with KVJ’s estimates. These two forces
essentially have equal but opposite effects for output in the model.

45It may seem surprising that the impact of QE did not decrease more. The reason is that this alternative
specification leads to different values for all of the five parameters that were chosen to match empirical
moments. Importantly, the experiment is thus not to change α from 1 to 0.97, holding all other parameters
fixed, for in this case the model would no longer be matching the empirical moments targeted, such as the
drop in output and inflation seen in 2008.
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future policy apart from being able to commit to pay back the nominal value of outstanding

debt. The role of the second assumption to our results is the focus of this subsection.

If the government can fully commit to future policy, then the maturity structure of gov-

ernment debt is irrelevant. It follows, according to our theory of QE, that QE is irrelevant

as well. That full commitment renders the maturity structure of debt irrelevant is a central

result in the classic paper of Lucas and Stokey (1983). It is especially simple to show the

logic of their argument in the 3 period model of Section 2 but we relegate its derivation to

Appendix A.3 along with some additional discussion. What we show there, formally, is that

the flow budget constraints of the government, together with the ex-ante asset pricing condi-

tions, allows us to write the government budget constraints as a single intertemporal budget

constraint (IBC). The IBC, which is the relevant constraint under the optimal commitment

plan, involves neither b0 nor l0 (and hence maturity of debt), but instead only the initial

condition b−1. Accordingly, the term structure imposes no constraints on the government’s

optimal plan under commitment.

The bottom-line, then, is that the assumption of taxation costs as well as the assumption

that the government cannot commit to future policy are the two most important ingredients

driving the results.46

4.2 An Independent Central Bank and Its Balance Sheet

A natural objection to our model of QE is that fiscal considerations are often not considered

to be part of a central bank’s mandate. This subsection shows an equivalence result in the

model of Section 2. Suppose an independent central bank cares about its own balance sheet

gains/losses in addition to the traditional dual mandate of inflation and output gap. Then,

under certain conditions, the same equilibrium can be derived as if the government as a whole

sets monetary and fiscal policy jointly, which is the benchmark set-up of this paper.

Consider an independent central bank with the objective:

−
2∑

t=0

βt{(Πt − 1)2 + λY (Yt − Ȳ )2 + λv(T
c
t − T̄ )2}, (46)

where T c
t is its transfer to the Treasury and T̄ is its target transfer. There are several examples

46For completeness, we show in Figure A.1 in Appendix A.7.1, the solution for optimal joint monetary
and fiscal policy under commitment vs. optimal monetary policy alone under commitment for the numerical
example of Section 2. The simulation shows that the two are close. A similar result also applies in the
quantitative model. The figure highlights that not much was missed in the discussion of our paper when we
focused on optimal monetary policy alone under commitment. The optimal-policy-commitment solution was
also shown in Figure 6 earlier in comparison with the optimal-discretion solution when λT > 0.
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of objectives of this form in the literature.47 One motivation is political economy. In the US

context, it seems reasonable that Congress would start asking questions if the Federal Reserve

were to sustain large capital losses and not contribute the same amount to the Treasury as

before.48 Another is that the central bank should care about capital losses, as they eventually

must be followed by taxation (or higher inflation) which in turn affects social welfare.49

Recently declassified minutes and memoranda from the Federal Reserve provide evidence

suggesting its staff was concerned with balance sheet considerations following the crisis of

2008. One example is a memorandum prepared by Joseph Gagnon, David Lucca, Jonathan

McCarthy, Julie Remeche, and Jennifer Roush for the Federal Reserve Open Market Com-

mittee (FOMC) on March 11, 2009.50 On page 9, the authors state:

However, to the extent that holding a large volume of long-term assets necessi-

tates carrying a large volume of interest-earning liabilities, future Federal Reserve

net income is subject to increased interest rate risk. In the example raised above,

the extra Federal Reserve net income from holding $1 trillion of MBS [mortgage-

backed securities] would shrink to zero if the rate of interest on reserve balances

(or on reverse repos) were to rise to 4.25 percent.

Another example is a memorandum to the FOMC on April 21, 2009.51 Its authors, Eileen

Mauskopf and Jae Sim, simulate the Federal Reserve Board’s FRB/US model to compute

trade-offs related to balance sheet exposure and possible losses. On page 2, the authors state:

Among the costs that we assume that the Committee will consider are those

related to the volume of assets being brought onto the Federal Reserve’s balance

sheet. For example, holding a large portfolio of long-term securities exposes the

Federal Reserve (and thus taxpayers) to appreciable capital losses if interest rates

rise quickly as the economy recovers.

47For example, Sims (2005) introduces the constraint that central bank transfers to the Treasury cannot fall
below a target. Jeanne and Svensson (2007) instead directly introduce into the objective of the central bank
one-time losses if the capital of the central bank falls below a certain level. Berriel and Bhattarai (2009) use a
quadratic term in central bank net worth in the loss function. See also Del Negro and Sims (2015). Perhaps a
more realistic version is an asymmetric objective. That is, we can posit that the central bank is happy to pay
more to the Treasury than T̄ but does not like T c

t to be below the target. This extension is possible but not
particularly important for the QE question, as one can assume a T̄ sufficiently high that T c

t < T̄ in all three
periods or, alternatively, that the initial net worth of the central bank is sufficiently low.

48Not to mention if, as in the case of Iceland in 2008, the central bank would need a large capital injection
in response to enormous capital losses, which led the government to fire the entire board of the central bank.

49Jeanne and Svensson (2007) and Berriel and Bhattarai (2009) provide anecdotal evidence from statements
from several central bankers before the financial crisis, and they point to some recent central bank legislation.

50https://www.federalreserve.gov/monetarypolicy/files/FOMC20090311memo02.pdf
51https://www.federalreserve.gov/monetarypolicy/files/FOMC20090421memo02.pdf
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Moreover, later in the QE period, other memoranda to the FOMC discussing the effects of

further asset purchases not only consider macroeconomic effects, but also include simulation

results concerning effects on the Federal Reserve’s balance sheet and income. An example is a

memorandum to the FOMC on November 30, 2012.52 This memorandum discusses in detail

how, given the simulations’ assumptions of interest rate increases in the future, additional

asset purchases by the Federal Reserve could lead to capital losses, an increase in interest

expense, and a decline in cumulative remittances to the Treasury between 2012 and 2015.

We interpret this evidence as being consistent with the idea that avoiding large balance sheet

losses was part of the the objective function of the FOMC during the QE period.

Motivated by this evidence, we model the balance sheet of an independent central bank in

our 3 period model. In period 0, it has one-period liabilities dc0 (interest-bearing reserves) and

both one-period (bc0) and two-period (lc0) assets. In period 1, it issues one-period liabilities,

dc1, and buys one-period assets, bc1. The initial net asset position of the central bank is lc−1.

As in the analysis of a consolidated government, the budget constraints can be rewritten

in terms of the minimum set of state variables in interest-inclusive terms. The state variable

in period 0 is wc
−1; in period 1, the state variables are wc

0 and xc0; and in period 2, the state

variable is W c
1 defined as:

W c
1 ≡ wc

1 + x0
wc

0

Π1

.

The budget constraint of the independent central bank can now be written as:

0 =
W c

1

Π2

− T c
2 , (47)

W c
1 =

wc
0

Π1

+ i1(1− x0)
wc

0

Π1

− (1 + i1)T
c
1 , and (48)

x0
wc

0

1 +R0

+ (1− x0)
wc

0

1 + i0
=
wc

−1

Π0

− T c
0 , (49)

where wc
0 ≡ (1 + R0)l

c
0 + (1 + i0) (b

c
0 − dc0), w

c
1 ≡ (1 + i1) (b

c
1 − dc1), w

c
−1 = lc−1, x0 ≡

(1+R0)lc0
(1+R0)lc0+(1+i0)(bc0−dc0)

, and (1−x0) ≡
(1+i0)(bc0−dc0)

(1+R0)lc0+(1+i0)(bc0−dc0)
. In this notation, wc

0 measures the net

asset position of the central bank in period 0, written in terms of maturity value. Meanwhile,

x0 measures the maturity composition of the central bank’s net asset position in period 0—the

ratio of long-term assets to the net asset position. It thus measures the maturity mismatch

in the central bank’s balance sheet in period 0. Detailed derivations are in Appendix D.

This leads to the following proposition:

52https://www.federalreserve.gov/monetarypolicy/files/FOMC20121130memo05.pdf
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Proposition 4 Under the assumption that an independent central bank maximizes the objec-

tive (46) subject to (47)-(49), the problems of the consolidated government and independent

central bank are identical if lc−1 = −b−1 and λv = λT .

The bottom-line, then, is that our model of a consolidated government budget constraint

can alternatively be interpreted from the perspective of an independent central bank. In

Appendix D.3 we discuss in more detail the condition in Proposition 4 that makes the two

models exactly equivalent, and how this alternative model should lead researchers to interpret

the data in somewhat different way than we have done here.53

4.3 Forward Guidance

A policy of forward guidance is usually defined as verbal commitment by a central bank about

future interest rate policy. In an MPE, however, verbal commitments have no effect. While it

is extreme to assume that central bank statements have no effect on expectations, the MPE

formalizes a common argument by policy makers against using forward guidance because the

credibility problem reduces its effectiveness.54

Even if one does not accept the extreme position that central banks’ words carry no

weight, the analysis of the MPE is still of interest as it helps isolate what actions can be taken

to enhance the credibility of forward guidance. There is considerable evidence that policy

makers believe their statements alone are not fully credible.55 This suggests the importance

of identifying such a commitment technology.

From a practical point of view, then, the analysis of the MPE in this paper can be inter-

preted as a study of how QE can be used as a commitment technology to supplement forward

guidance. A central bank can make a particular statement about future interest rate policy.

If this forward guidance is not believed, then the central bank can engage in QE until market

53We make an initial attempt to clarify the relevant data for an independent central bank in our NBER WP
version of this paper (No. 21336), but have omitted this extension here to conserve on space.

54Nakata (2014) is an analysis of credible plans which incorporates reputation considerations. There is a
related literature estimating the effect of forward guidance highlighting that it can either signal change in
policy or information about future state of the economy (Campbell et al. (2012) and Andrade and Ferroni
(2016)). Since our model assumes full information, it does not capture this interesting feature of forward
guidance. If there was incomplete information, our result would still apply under the assumption that the
government is committed to revealing the true state of the economy.

55For example, John Williams, then president of the Federal Reserve Bank of San Francisco, noted this
in an FOMC meeting in 2011 when discussing the possibility of adopting more aggressive forward-guidance
language: “In the jargon of academics, our commitment technology is very limited. It is simply impossible for
us to set a predetermined course of policy that will bind future Committees.” Similarly, the current chair of the
Federal Reserve, Jay Powell, noted in the context of policies that involved committing to a future expansion
at the ZLB: “Part of the problem is that when the time comes to deliver the inflationary stimulus, that policy
is likely to be unpopular, what is known as the time consistency problem in economics.”
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expectations of future interest rates adjust according to the central bank’s intent.56

4.4 Empirical Effects of Changing Debt Maturity

The empirical evidence on the effect of changes in the maturity of government debt on interest

rates (outside of the financial crisis or ZLB) is relatively small. The existing evidence, however,

is largely consistent with the model, even in rough orders of magnitude. A direct mapping to

our model, however, is challenging.57 Previously, we focused on the degree to which the model

matched the evidence at the ZLB presented by KVJ, because the mapping of their estimate

can be directly translated to the model at the ZLB. Here we focus on the degree to which the

model can account for the empirical evidence outside of the ZLB.

This evidence is summarized in Tables 5 and 6. Table 5 compares the implied reduction

in long-term rates in response to a one-year maturity reduction, comparing the output of our

model to the estimate by Chada et al. (2013), who use a regression analysis to estimate the

effect of debt-maturity reduction on interest rates. As the table reveals, the implied reduction

in long rates according to our model (at positive interest rates) is less than one-fourth of that

predicted by their estimation, suggesting that our calibration is relatively conservative.

The evidence in Table 5 maps relatively cleanly into our analysis as we can compare the

reduction in debt maturity in the study in question to our model. Comparison to other

studies requires an additional assumption, since they typically only report the size of policy

intervention in long-term bonds as a fraction of GDP. Thus, it is only under the assumption

that the composition of long-term bonds purchased in the intervention is exactly the same as

in the model that the magnitudes are comparable.

Table 5: Effects of debt-maturity reduction on long-term rates outside the zero lower bound

Source Policy intervention Change in 5-year
forward 10-year rate

Chada et al. (2013) 1-year maturity reduction −130 to −150 bp
Out of ZLB model prediction 1-year maturity reduction −32 bp

With this caveat in mind, Table 6 suggests, again, that the reduction in 10-year yields is

a bit more conservative in our model relative to empirical studies we consider. Hamilton and

56The idea that QE can be used to demonstrate resolve and make the optimal commitment incentive
compatible has some history in the literature. For a discussion, see Clouse et al. (2003) and Eggertsson and
Woodford (2003), though neither formalizes the idea.

57A key difficulty with interpreting the estimates discussed below is that they typically only report the total
effect of the changes in maturity on long-term rates, without determining whether this change was associated
with changes in expectations about future short-term rates or with changes in term- or risk-premia. A notable
exception is KVJ, which is why we used their estimates for the expected short-term rate effects of QE2 as an
example of an untargeted moment. It is not obvious, however, whether decomposing the total effect is easy in
practice. Changes in expected future short-term rates may endogenously change the term- and risk-premia.
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Wu (2012) use an affine term structure model to estimate the effect of purchasing long-term

debt on long-term rates using pre-crisis data. As the table suggests, each percentage point

of intervention (as a fraction of GDP) leads to a reduction in 10-year yields of about 4.8 bp.

Swanson (2011) uses an event-study approach focusing on the Federal Reserve’s Operation

Twist in 1961. As the table reveals, each percentage point of intervention (as a fraction of

GDP) leads to a drop in 10-year yields of 7.6-9.4 bp. The last row in Table 6 considers the

effect of QE2 in the case when interest rates are positive in our model. As it indicates, an

intervention corresponding to 1 percent of GDP reduces 10-year yields by 2.8 basis points.

Thus, the evidence reported in Table 6 is largely consistent with the one presented in Table

5: Our benchmark calibration yields a response of long-term yields that is lower than what

these studies document.58

Table 6: Effects of Quantitative Easing on long-term yields

Source Policy intervention Change in 10-year yields

Hamilton and Wu (2012) 2.9% of GDP, 2006 -14 bp
Swanson (2011) 1.7% of GDP, 1961 -13-16 bp

Model implied QE2 out of ZLB 4% of GDP, 2010 -11.39 bp

There is also empirical literature related to Figure 11, which shows transition dynamics for

debt maturity and debt in the quantitative model. As the figure reveals, the government in-

creases the maturity of its debt as it reduces its debt position. One interpretation of this result

is that in a cross-section of countries, those with higher government debt tend to have lower

debt maturity and higher inflation, assuming they are in a transition to steady-state. This is

the empirical pattern documented in Blanchard and Missale (1994).59 Finally, Greenwood and

Vayanos (2010) consider the effect of the US Treasury buyback program in 1999–2000, which

was on the order of $63.5 billion. They argue that this intervention led to a substantial drop

in long-term rates at various maturities, even for maturities of Treasuries that the government

did not buy back. Such an effect can be rationalized by our model, as QE leads to a decrease

in expected short rates.

58Bordo and Sinha (2016) study an intervention by the Federal Reserve during the Great Depression which
included the purchase of both medium- and long-term government debt and equaled 2% of GDP. They report
a reduction in yield for Treasury bonds (with an average maturity of eighteen years) of 19 to 42 bp. As our
focus here is on evidence away from the ZLB, we do not include this estimate in Tables 5 and 6.

59This is, however, a different interpretation from the one emphasized by Missale and Blanchard (1994). A
similar finding is reported by Rose and Spiegel (2015), who show that countries that have a bond market for
long-term debt (and thus presumably have a longer debt maturity) tend to experience lower inflation.
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4.5 Related Theoretical Literature

A common theme in the literature on inflation and government debt is that more long-term

debt gives the government a stronger incentive to inflate, not a weaker incentive as this paper

shows (see e.g., Missale and Blanchard (1994)). Similarly, empirical analyses often stress that

the fiscal benefits of inflation are higher the longer is the maturity of debt (see e.g., Aizenman

and Marion (2011), Doepke and Schneider (2008), and Hilscher et. al. (2018)). This line of

research does not contradict our result. The reason for the seemingly different findings is that

these studies consider the fiscal benefits of inflation over an extended period—longer than the

duration of the short-term debt and often of similar duration as the long-term debt.60 This

results in a fundamentally different game than the one in this paper, where the government

re-optimizes period by period. In Appendix E we flesh out this argument in detail.

The dynamic inconsistency problem created by the existence of government debt when

taxation is costly is a theme of Lucas and Stokey (1983) and the rich subsequent literature.61

Lucas and Stokey’s solution to the problem is a careful manipulation of the maturity structure

of debt, i.e., going long, making the optimal solution time consistent. Persson et al. (1987,

2006), Calvo and Obstfeld (1990), and Alvarez et al. (2004) show under what conditions a

similar strategy can be implemented (and when it cannot) in a flexible price monetary econ-

omy. Calvo and Guidotti (1990,1992) are two other examples that touch on the same themes.

Broadly speaking, the key idea in this paper can be interpreted as the Lucas and Stokey (1983)

solution in reverse. While their strategy is to lengthen the duration of government debt in

order to eliminate the government’s incentive to reduce the real interest rate in the future, QE

accomplishes the opposite in order to give the government the incentive to keep real interest

rates low in the future, as needed at the ZLB. Unlike this literature, this paper considers both

the ZLB and price rigidities – these two frictions are fundamental for generating the results.62

This paper follows the work cited above by assuming the government never defaults on

its debt. This is a reasonable assumption for large countries that issue debt in their own

currencies. This assumption, however, is less plausible for small open economies that con-

tract their debt in foreign currency. There is a considerable literature that focuses on small

open-economy models which allow for the possibility that the government defaults in certain

60Missale and Blanchard (1994) directly assume a reduced-form sensitivity of debt to inflation that is
decreasing in the maturity of debt, and the actions of the government in the game they present are best
interpreted as corresponding to the actions of a government choosing an inflation policy regime over an
extended period (see Appendix E for more details). In Aizenman and Marion (2011), the duration of the
inflation policy is the same as that of long-term debt. Hilscher et al. (2018) consider the empirically estimated
expected-inflation scenarios extracted from asset markets, while Doepke and Schneider (2008) consider an
unexpected increase in inflation for ten years.

61Calvo (1978) represents an important early paper in this literature.
62There is also a literature emphasizing that, in the absence of state-contingent bonds, the maturity structure

of debt can be used to hedge against fiscal shocks; see Angeletos (2002) and Leeper and Zhou (2013).
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states of the world; see, e.g., Aguiar et al. (2019) and Arellano and Ramanarayanan (2012).

This branch of the literature shows that the possibility of default also leads to a dynamic-

inconsistency problem for the government. Moreover, it shows that shortening the maturity

structure of government debt alleviates the dynamic inconsistency problem by creating fiscal

discipline for future governments. This may seem to contradict the closed economy literature

which instead suggests that the government should lengthen its debt maturity to avoid the

incentive to inflate. In followup work, Bhattarai et al. (2022), we show how the two literatures

can be reconciled. The incentive mechanism explored in the open economy literature is closely

related to what we term the rollover incentive in Section 2.3.2; see Bhattarai et al. (2022) for

details.

Another argument for the effect of QE is that it works through a portfolio balance channel.

The most common way of modeling the portfolio balance channel is via preferred habitat

motives and market segmentation. Chen et al. (2012) is an example that incorporates such a

friction, and finds a small role for the portfolio balance effect, with most effects coming via a

commitment to hold future interest rates low, a mechanism formalized here. 63

Other papers, such as Gertler and Karadi (2011, 2012) and Del Negro et al. (2019), provide

frameworks in which asset purchases by the central bank have an effect because of financial

imperfections and limits to arbitrage. Those mechanisms can account for a substantial effect

of QE1, which included purchases of private securities at a time of considerable market dys-

function. It is more difficult, however, to make such a case for QE2 and QE3, when the market

dysfunction was much smaller and the policy mostly involved buying long-term government

bonds. This is why QE2 is the benchmark for the model calibration in this paper.

5 Conclusion

This paper develops a model of QE policy in which the maturity of government debt decreases.

Faced with a binding ZLB and ensuing recession and deflation, a government policy that

shortens government debt maturity improves on outcomes, as QE generates expectations of

low future real interest rates. The key ingredient for the mechanism is that when policy is set

in a time-consistent manner, there exists a role for manipulating the maturity of government

debt to generate a credible commitment to future expansionary policy. We first showed these

results theoretically in a simple setting and then assessed their quantitative relevance.

Future work can extend ours both empirically and theoretically. While the focus in this

63There is no portfolio balance channel in this paper. This is not, however, because long- and short-term
bonds are perfect substitutes. As explained in Eggertsson and Woodford (2003)(see p. 159), the model can
be extended to incorporate different risk characteristics of long- and short-term bonds and, thus, a term- and
risk-premia. That extension will not change the results in this paper for the same reasons discussed there.
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paper was on QE episodes, the mechanism also holds in reverse. For instance, during the

“taper tantrum” episode in 2013, when Ben Bernanke announced that the Fed would taper

QE in the future, federal funds futures suggested markets expected future short-term rates to

rise.64 We leave a further analysis of such episodes for future research.

64We are indebted to Jim Bullard, president of the Federal Reserve Bank of St. Louis, for educating us on
this empirical pattern in an insightful discussion of our paper.
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Appendix

A Details on the Simple Model

This section contains detailed microfoundations of the simple model and a derivation showing

the utility function of the government used in text is equivalent to a second-order approxima-

tion of the household utility. It also contains additional results mentioned in the text.

A.1 Environment

There are three periods, 0, 1, and 2 (short, medium, and long run respectively). A represen-

tative household maximizes

E0

2∑
t=0

βt [logCt − χHt] ξt

subject to

P0C0 +B0 + L0 = B−1 +

∫ 1

0

Z0(i)di+N0H0 − P0T0, (A.1)

P1C1 +B1 = (1 + i0)B0 +

∫ 1

0

Z1(i)di+N1H1 − P1T1, (A.2)

P2C2 = (1 + i1)B1 + (1 +R0)L0 +

∫ 1

0

Z2(i)di+N2H2 − P2T2, (A.3)

where Ct is consumption, Ht hours, and ξt a preference shock. B−1 is the initial wealth the

household holds in period 0; B0 and B1 are one-period nominal risk-free bonds; and L0 is

long-term nominal bonds issued in period 0 and repaid in period 2. The short-term interest

rates in periods 0 and 1 are i0 and i1, while R0 is the long-term nominal interest rate. Nt is

the nominal wage rate, Pt is the price index, Zt(i) is firms’ profits where (i) indexes firms,

and Tt is taxes. The model abstracts from money.65

The intertemporal dimension of the household maximization yields first-order conditions

for the one-period risk-free bonds:

1

1 + it
= βEt

[
Yt
Yt+1

Π−1
t+1

ξt+1

ξt

]
for t = 0, 1, (A.4)

where Πt =
Pt

Pt−1
and we substitute the equilibrium condition Ct = Yt, where Yt is aggregate

65Since money and bonds are perfect substitutes at zero interest rates, this abstraction seems less important
in the current context than in many other applications.
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output derived below.66 Similarly it yields a first-order condition for the long-term bond:

1

1 +R0

= β2E0

[
Y0
Y2

Π−1
1 Π−1

2

ξ2
ξ0

]
. (A.5)

There is a zero bound on the nominal interest rate67:

it ≥ 0 for t = 0, 1. (A.6)

Optimal labor supply satisfies the standard first-order condition:

Nt

Pt

= χYt for t = 0, 1, 2. (A.7)

Consumption is a Dixit-Stiglitz aggregator of the varieties, Ct ≡
[∫ 1

0
ct(i)

θ−1
θ di

] θ
θ−1

, and the

optimal price index is

Pt ≡
[∫ 1

0

pt(i)
1−θdi

] 1
1−θ

, (A.8)

where θ > 1 is the elasticity of substitution across goods with (i) indexing good varieties. The

intratemporal dimension of the household maximization problem yields a demand for each

good variety ct(i) =
(

pt(i)
Pt

)−θ

Ct.

For each good variety, there is a single firm, so yt(i) = ct(i). The firm has a linear production

function yt(i) = ht(i). The firm maximizes profits Zt(i) = (1 + τ)pt(i)yt(i) − Ntyt(i), facing

the demand yt(i) =
(

pt(i)
Pt

)−θ

Yt where τ is a production subsidy and Yt = Ct.

In periods 0 and 1, a fraction γ of firms set prices flexibly, yielding the first-order condition

(1 + τ)
poptt

Pt

=
θ

θ − 1

Nt

Pt

.

Substituting for Nt

Pt
from (A.7) and setting 1 + τ = θ

θ−1
to eliminate markups gives

poptt

Pt

=
Yt
Ȳ
,

where Ȳ = χ−1 is steady-state output.68

In periods 0 and 1, a fraction 1− γ of firms index their prices to the aggregate price level

66Thus, all output is consumed.
67The lower bound could be different from zero (for example, slightly negative) without changing the results.
68The production subsidy is set to abstract from the inflation bias. For an extension incorporating the

inflation bias at the ZLB, see Eggertsson (2006). Throughout, a steady state, that is, the value of a variable

x in the absence of shocks, is denoted by x̄. In the flexible price steady state, then,
popt
t

Pt
= 1 and χ = Ȳ −1.
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from last period:
pindt

Pt

= zt
Pt−1

Pt

,

where zt is a term introduced for technical reasons. The price index (A.8) satisfies

P 1−θ
t = γ(poptt )1−θ + (1− γ)(pindt )1−θ.

A fraction of firms, γ, sets prices every period, yielding the first-order condition

(1 + τ)
poptt

Pt

=
θ

θ − 1

Nt

Pt

,

where the productive subsidy is set to eliminate markups so that

poptt

Pt

= χYt,

where we have also imposed Yt = Ct. Denote the steady state by Ȳ . In the steady state, then,
poptt

Pt
= 1 so that χ = Ȳ −1. Hence the first-order condition is written as

poptt

Pt

=
Yt
Ȳ
.

A fraction 1 − γ index their price to the previous-period price index ztPt−1, where we

introduce zt for technical reasons to be clarified, yielding

pindt

Pt

= zt
Pt−1

Pt

.

The price index then satisfies

P 1−θ
t = γ(poptt )1−θ + (1− γ)(pindt )1−θ,

or

1 = γ

(
poptt

Pt

)1−θ

+ (1− γ)

(
pindt

Pt

)1−θ

= γ

(
Yt
Ȳ

)(1−θ)

+ (1− γ)

(
zt
Pt−1

Pt

)1−θ

.

For simplicity, θ = 2. Then,

1 = γ

(
Yt
Ȳ

)−1

+ (1− γ)

(
z−1
t

Pt

Pt−1

)
,
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or

(1− γ)

(
z−1
t

(
Pt

Pt−1

)
− 1

)
= γ

(
Yt − Ȳ

Yt

)
. (A.9)

This finally yields

(Πt − 1) =
γ

1− γ
(Yt − Ȳ ) (A.10)

for zt =
Pt

Y −1
t (Pt−Pt−1)+Pt−1

. Relative to (A.9) with zt = 1, (A.10) is slightly simpler as it involves

Yt − Ȳ rather than Yt−Ȳ
Yt

. But these two are the same to a first-order because zt is 1 in steady

state and small numerically.69 Using (A.10) simplifies the algebra slightly, which is why it is

used in the paper.

Thus, we have the simple Phillips curve in periods 0 and 1

(Πt − 1) = κ(Yt − Ȳ ) for t = 0, 1, (A.11)

where κ ≡ γ
1−γ

. In period 2, all firms set prices freely:

Y2 = Ȳ = χ−1. (A.12)

The model abstracts from government spending. The government inherits debt B−1, which

needs to be paid back. The key assumption of this paper is that, as in Barro (1979), taxes are

not a one-to-one transfer of purchasing power from individuals to the government. Instead,

taxes require some collection and/or indirect misallocation costs. More concretely, the “pro-

duction” of government revenues, Tt, requires hiring labor corresponding to f(Tt) hours, where

f(.) is increasing and convex in Tt.
70 Since the production function of the firms is linear in

labor, total hours worked are Ht = Yt∆t+f (Tt) , where ∆t is a price dispersion term. Because

utility is linear in labor, taxes do not have any effect on relative prices (such as wages) and

they do not distort allocations. Taxes, however, have a negative effect on social welfare by

requiring labor input. The model thus captures a welfare cost of taxes while abstracting from

allocation effects.71

The government utility function is

−1

2
E0

2∑
t=0

βt
[
λπ(Πt − 1)2 + λy(Yt − Ȳ )2 + λT (Tt)

2
]
, (A.13)

where λπ, λy, and λT are weights that are functions of structural parameters. This utility

69Imposing zt = 1 would imply exact indexation of nonadjusting prices to the past aggregate price.
70Here, Tt denotes tax revenues net of government workers’ salaries.
71In the quantitative model, utility is not assumed to be linear in labor, but the implications for taxes are

similar. The reason for this is that taxes only affect allocations up to a second order in the quantitative model.
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function is derived via a second-order Taylor expansion of the representative household utility

in periods 0 and 1, as shown in Section A.2 below.72 The term involving taxes appears due

to the taxation costs, where λT ≡ χf ′′(T̄ ) and T̄ is steady-state taxes. Going forward, we

normalize the weight on inflation to 1.

The flow budget constraints of the government, derived as counterparts to (A.1)-(A.3), are

b0 + l0 =
b−1

Π0

− T0, (A.14)

b1 = (1 + i0)
b0
Π1

− T1, (A.15)

0 = (1 + i1)
b1
Π2

+ (1 +R0)
l0

Π1Π2

− T2, (A.16)

where B−1

P−1
= b−1,

B0

P0
= b0,

L0

P0
= l0, and

B1

P1
= b1.

A.2 Loss Function

For the welfare-relevant loss function derivation, we need to first derive the production function

in “aggregate hours” terms and where a second-order term related to price dispersion will

appear as in the standard New Keynesian model. Denote hours used for private production

by Hp
t and hours used for tax collection by Hg

t .

We have

Hp
t =

∫ 1

0

ht(i)di,

Ct = Yt.

This gives

Hp
t =

∫ 1

0

yt(i)di = Yt

∫ 1

0

(
pt(i)

Pt

)−θ

di = Yt∆t,

where price dispersion is

∆t ≡
∫ 1

0

(
pt(i)

Pt

)−θ

di ≥ 1.

Firms that do not adjust their prices choose

pindt = ztPt−1,

72The utility function derived from a second-order approximation, as opposed to the exact utility function,
is used because it makes the illustration slightly simpler and more transparent.
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so that

∆t = γ

(
poptt

Pt

)−θ

+ (1− γ)

(
Πt

zt

)θ

.

From before,
poptt

Pt
= χYt such that

∆t = γ (χYt)
−θ + (1− γ)

(
Πt

zt

)θ

.

The aggregate production function is thus

Hp
t = Yt∆t = Yt

[
γ (χYt)

−θ + (1− γ)

(
Πt

zt

)θ
]
.

Utility is then

Ut = logCt − χHp
t − χHg

t = log Yt − χ1−θγY 1−θ
t − χ(1− γ)Yt

(
Πt

zt

)θ

− χf(Tt).

Finally, substituting for zt we have

logCt − χHp
t − f(Tt) = log Yt − χ1−θγY 1−θ

t − χ(1− γ)Yt
(
Y −1
t (Πt − 1) + 1

)θ − f(Tt).

A second-order expansion of this around the efficient steady state yields

Ut ≈ −1

2
χ2 (1− γ) θ (θ − 1)

[
(Πt − 1)2 +

(
1− γθ (1− θ)

(1− γ) θ (θ − 1)

)
(Yt − Ȳ )2

]
− χf ′′ (T̄)T 2

t ,

which is the loss function we use in the text.

A.3 The Optimal Commitment Problem

To study the optimal monetary and fiscal policy under commitment, we derive a single in-

tertemporal budget constraint of the government. First, combine the three flow budget con-

straints ((A.14), (A.15), and (A.16)) from Appendix A.1. Then impose ex ante asset-pricing

conditions (A.4) and (A.5). Then the government’s problem is only subject to the present-

value budget constraint(
Π2

1 + i1

)(
Π1

1 + i0

)
T2 +

(
Π1

1 + i0

)
T1 + T0 =

b−1

Π0

;
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terms involving b0 and l0 separately, which determine the maturity of the debt in period 0,

are eliminated, thus playing no role in the optimal plan. What can be determined is the total

stock of debt, b0+ l0, using the flow budget constraint (A.14). This is a restatement of the

finding by Lucas and Stokey (1983) that optimal policy under commitment pins down a time

path for taxes but leaves the maturity of debt indeterminate.73

What is key here, and differentiates the optimal commitment problem from the MPE, is

that we can substitute out the asset pricing conditions (A.4) and (A.5) to derive the present

value budget constraint, that is, the intertemporal budget constraint (IBC) we refer to in

the main text. These conditions depend on expectations about future endogenous variables,

which under optimal commitment, the government controls (subject to all the constraints in

the model). In the MPE, however, the government can only affect these variables indirectly

via the expectation functions that depends on the endogenous state variables, and were a key

part of deriving the MPE.

The monetary and fiscal commitment problem then is solved by formulating the La-

grangian, where ϕi and γi are Lagrange multipliers

L0 =

{
1
2
(Π0 − 1)2 + 1

2
λTT

2
0 + 1

2
λy
(
Y0 − Ȳ

)2
+β 1

2
(Π1 − 1)2 + β 1

2
λTT

2
1 + β 1

2
λy
(
Y1 − Ȳ

)2
+ β2 1

2
(Π2 − 1)2 + β2 1

2
λTT

2
2

}

+ϕ1

{(
Π2

1 + i1

)(
Π1

1 + i0

)
T2 +

(
Π1

1 + i0

)
T1 + T0 −

w−1

Π0

}

+ ϕ2

{
1

1 + i0
− β1

Y0
Y1

1

Π1

}
+ ϕ3

{
1

1 + i1
− β

Y1
Y

1

Π2

}
+ ϕ4

{
(Π0 − 1)− κ

(
Y0 − Ȳ

)}
+ ϕ5

{
(Π1 − 1)− κ

(
Y1 − Ȳ

)}
+ γ0{i0}+ γ1{i1}

and computing the derivatives with respect to L0 for all the endogenous variables {Π0, Y0,

T0, Π1, Y1, T1, i0, i1, Π2, T2} and setting them to zero. For the two interest rates, there are

complementary slackness conditions:

γj ≥ 0, ij ≥ 0, ijγj = 0.

This presentation also nests the case of optimal monetary commitment only, where we set

λT = 0, that is discussed in Section 2.2 in the text.

73Important for their result, but not ours, is that the government can issue state-contingent bonds that can
be used to react to stochastic variations in government spending. The simple model assumes perfect foresight,
and so we do not need state-contingent bonds. Generally, in a model with uncertainty, one needs to assume
that the government can issue state-contingent bonds for the maturity structure of debt to be irrelevant.
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A solution is defined as the set of endogenous variables that solve the first-order conditions

of the government’s problem, the constraints, and the complementary slackness condition. The

solution is computed by guessing and verifying when the ZLB is binding, in which case it boils

down to finding a solution to a system of nonlinear equations that can be solved numerically.

Mathematica codes that do this are available online.

Note that immediately from the problem, it is clear that Π2 = 1, as there is no reason

for the government to inflation in period 2, once it can commit ex-ante in period 0 to future

course of policy. This holds as long as i1 is not constrained by ZLB, which is what we consider

in the paper. For this reason, as discussed in text, the optimal discretionary and commitment

solution will never coincide fully, as in the MPE with nominal debt, there will be some inflation

in period 2.

A.4 The MPE in period 2

Government’s problem is to

V 2(W1) = max
T2,Π2

{−1

2
(Π2 − 1)2 − 1

2
λT (T2)

2}

s.t.

T2 = W1 (Π2)
−1 .

The Lagrangian is

L =

{
1

2
(Π2 − 1)2 +

1

2
λTT

2
2

}
+ ϕ2

{
T2 −W1Π

−1
2

}
where ϕ2 is the Lagrange multiplier. The FOCs are

∂L

∂Π2

= (Π2 − 1) + ϕ2W1 (Π2)
−2 = 0,

∂L

∂T2
= λTT2 + ϕ2 = 0.

Consolidate the two FOCs above to get

(Π2 − 1) = λTT2W1 (Π2)
−2 ,

which is (12) in text. Next, we can use the flow budget constraint to replace for T2 and get

(Π2)
3 (Π2 − 1)− λT (W1)

2 = 0,

8



which is (13) in text, as well as the “targeting rule” in period 2

Π2 (Π2 − 1) = λTT
2
2 .

The envelope theorem gives
∂V 2

∂W1

= λT
W1

(Π2)2
,

while the implicit function theorem gives

∂Π2

∂W1

= 2λT
W1

4(Π2)3 − 3(Π2)2
,

which are (16) and (17) in text.

A.5 The MPE in period 1

The problem is

V 1(x0,w0) = −1

2
(1 +

λy
κ2

)(Π1 − 1)2 − 1

2
λT (T1)

2 + βV 2(W1)

s.t.

W1 =
w0

Π1

+ i1(1− x0)
w0

Π1

− (1 + i1)T1,

1 + i1 = β−1(
Ȳ

κ−1Π1 − κ−1 + Ȳ
)Π̄2(W1),

where the Phliips curve (κ−1 (Π1 − 1) =
(
Y1 − Ȳ

)
) has already been imposed in the loss

function and the Euler equation. We rewrite the constraints as a single constraint

W1 =
w0

Π1

+ {β−1(
Ȳ

κ−1Π1 − κ−1 + Ȳ
)Π̄2(W1)− 1}(1− x0)

w0

Π1

− β−1(
Ȳ

κ−1Π1 − κ−1 + Ȳ
)Π̄2(W1)T1.

The Lagrangian is

L = −1

2
(1 +

λy
κ2

)(Π1 − 1)2 − 1

2
λT (T1)

2 + βV 2(W1)

− ϕw,1

[
W1 − w0

Π1
− {β−1( Ȳ

κ−1Π1−κ−1+Ȳ
)Π̄2(W1)− 1}(1− x0)

w0

Π1

+β−1( Ȳ
κ−1Π1−κ−1+Ȳ

)Π̄2(W1)T1

]

9



The FOCs are

∂L

∂Π1

= −(1 +
λy
κ2

)(Π1 − 1)− ϕw,1{
w0

Π2
1

+ β−1

(
Ȳ κ−1

(κ−1Π1 − κ−1 + Ȳ )2

)
Π̄2(W1)(1− x0)

w0

Π1

}

− ϕw,1{{β−1(
Ȳ

κ−1Π1 − κ−1 + Ȳ
)Π̄2(W1)− 1}(1− x0)

w0

(Π1)2
}

− ϕw,1{−β−1

(
Ȳ κ−1(

κ−1Π1 − κ−1 + Ȳ
)2
)
Π̄2(W1)T1}

= 0

∂L

∂W1

= βV 2
W (W1)

− ϕw,1{1− β−1(
Ȳ

κ−1Π1 − κ−1 + Ȳ
)Π̄2

W (W1)(1− x0)
w0

Π1

+ β−1(
Ȳ

κ−1Π1 − κ−1 + Ȳ
)Π̄2

W (W1)T1}

= 0

∂L

∂T1
= −λTT1 − ϕw,1(β

−1(
Ȳ

κ−1Π1 − κ−1 + Ȳ
)Π̄2(W1))

= 0

where note that from the period 2 problem we have

(Π2)
4 − (Π1)

3 − λT (W1)
2 = 0,

and

V 2
W = λT

W1

(Π2)2
, Π̄2

W = 2λT
W1

4(Π2)3 − 3(Π2)2
.

Equilibrium in period 1, {Π1, T1,W1, ϕw,1}, is then the solution to the three first-order con-

ditions above and the budget constraint (where again, the Phillips curve and Euler equation

have already been imposed), for given w0, x0. {i1, Y1} can then be solved for using the Phillips

curve and Euler equations.

Consolidating the two FOCs wrt Π1 and T1 gives

{1+λy
κ2

}(Π1−1) =
λTT1

(1 + i1)
{w0

Π2
1

+
κ−1Π1

Y1
(1 + i1) (1−x0)

w0

Π2
1

+(i1) (1−x0)
w0

Π2
1

− κ−1

Y1
(1 + i1)T1}

which is (24) in text.
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A.6 Proofs

This section contains the proofs of the Propositions in the simple model mentioned in the text

that rely on an approximation around a no tax-smoothing point.

A.6.1 Period 2

The approximation point is λT = 0, Π2 = 1, and T2 = W1. Start with the equilibrium condition

in period 2,

Π4
2 − Π3

2 − λT (W1)
2 = 0.

First-order Taylor expansion, taking W1 as given, yields

Π2 = 1 +W1
2λT .

Next, the budget constraint in period 2 is

T2 =
W1

Π2

.

First-order Taylor expansion of it, together with Π2 = 1 +W1
2λT , gives

T2 = W1 −W 3
1 λT .

This completes the proof of Proposition 1 in text.

A.6.2 Period 1

The approximation point is λT = 0, Π1 = 1, Y1 = 1, (1 + i1) = β−1, and T1 =
w0

2
. Start with

the equilibrium condition in period 1, (24),

{1+ λy
κ2

}(Π1−1) =
λTT1

(1 + i1)
{w0

Π2
1

+
κ−1Π1

Y1
(1 + i1) (1−x0)

w0

Π2
1

+ i1(1−x0)
w0

Π2
1

− κ−1

Y1
(1 + i1)T1}.

First-order Taylor expansion, taking w0 and x0 as given, yields

(1+
λy
κ2

)(Π1− 1) =
λTT

∗

1 + i∗1
{w0+κ

−1(1+ i∗)(1−x0)w0+ i
∗(1−x0)w0−κ−1(1+ i∗)T ∗} (A.17)

which is (26)-(27) in the text once we impose T ∗ = w0

2
and 1 + i∗1 = β−1 .
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For proof of Proposition 2, first, impose T ∗ = w0

2
and 1 + i∗1 = β−1 in (A.17) to get

Π1 = 1 +

(
λT

1 + λy

κ2

)
{1− κ−1β−1

2
+ β−1(1− β + κ−1)(1− x0)}

w2
0

2β−1
.

Next, approximate (25), that is,

1 + i1 = β−1(
Ȳ

κ−1Π1 − κ−1 + Ȳ
)Π̄2(W1)

to get

i1 = β−1 (1− β)− β−1κ−1(Π1 − 1),

as Π̄2(W1) = 0 at λT = 0.

Then it follows that

∂Π1

∂x0
= −

(
λT

1 + λy

κ2

)
{β−1(1− β + κ−1)} w2

0

2β−1
< 0,

∂i1
∂x0

= −β−1κ−1∂Π1

∂x0
> 0,

∂Π1

∂w0

= w0{1 + β−1
(
κ−1 + 1− β

)
(1− x0)− κ−1β−11

2
} 1

β−1

dλT

{λΠ + λy

κ2 }
,

∂i1
∂w0

= −β−1κ−1∂Π1

∂w0

.

This implies that,
∂Π1

∂w0

> 0 and
∂i1
∂w0

< 0 iff x0 <
1 + 1

2
κ−1

1− β + κ−1
.

This completes the proof of Proposition 2 in text.

A.7 Additional Results and Figures

We report some additional results mentioned in the main text below.

A.7.1 Optimal monetary commitment with and without fiscal policy

Figure A.1 compares the optimal monetary policy commitment with λT = 0 to the one with

λT > 0 that is referenced in the text. Relative to the optimal monetary policy commitment,

the joint commitment policy is similar, but, slightly more expansionary, yielding both higher

inflation and output across all periods. The reason is that government debt is nominal, so

there are fiscal gains from inflation, as inflation reduces the real value of debt. Moreover, there

12



Figure A.1: Impulse responses under optimal policy with commitment at the ZLB

Note: The figure shows the responses of output, inflation, nominal interest rate, and real interest rate when a

negative demand shock makes the ZLB bind in the short run. The green line shows the solution for optimal

monetary and fiscal policy under commitment. The yellow line shows the solution for optimal monetary policy

under commitment.

are fiscal benefits of keeping the real interest rate low as this affects the cost of rolling over

the debt, an important feature of the environment that will play a central role in the MPE.

A.7.2 Policy functions

Figure A.2 shows the period 1 policy functions for all variables with respect to x0 in the MPE

in the numerical example.

Figure A.3 shows the period 1 policy function with respect to w0 in the MPE in the

numerical example. Note how the policy functions in period 1 with respect to the maturity

value of debt (w0) depend on the maturity of debt (x0), as discussed in the text and also

given analytically in the approximated solution in Proposition (2). In particular, while with

only short-term debt (x0), increases in the maturity value of debt lead to higher inflation and

lower interest rates, the reverse is the case for longer maturity debt.

13



Figure A.2: Medium-run policy functions

Note: The figure shows policy functions for output, inflation, nominal interest rate, and taxes (with respect

to x0) in the medium run with optimal monetary and fiscal policy under discretion. The vertical yellow line

shows the optimal value of maturity of debt (x0 = 1.31). The maturity value of debt (w0) is fixed at the

optimal value (72%). The dashed lines show the approximate, analytical policy functions discussed in the

text.
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Figure A.3: Medium-run policy functions

Note: The figure shows policy functions for output, inflation, nominal interest rate, and taxes (with respect

to w0) in the medium run in the model with optimal monetary and fiscal policy under discretion. The results

are shown for two different maturities of debt (x0). x0 = 1.31 constitutes the optimal maturity. The vertical

yellow line shows the optimal maturity value of debt (w0=72%). The dashed lines show the approximate,

analytical policy functions discussed in the text.
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A.7.3 Optimal QE: Alternative calibration

Figure A.4 present results on optimal quantitative easing for a calibration different from the

baseline. Here, all parameter values are the same as the baseline reported in text except

that initial outstanding debt (w−1) is 0.5. The green line shows the solution for the MPE

if monetary and fiscal policy is conducted optimally under discretion. The yellow line shows

optimal monetary and fiscal policy under commitment. The purple line show the government

policy if the government acts under discretion but keeps the maturity of the debt fixed at time

0 at what would have been optimal in the absence of the shock, that is, x0 = 0.2. This case

is labeled constrained discretion. The three solutions in this case are visibly different also for

interest rates and inflation.
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Figure A.4: Impulse responses under optimal quantitative easing and other policies at the
ZLB

Note: The figure shows the responses of output, inflation, nominal interest rate, and taxes when a negative

demand shock makes the ZLB bind in the short run. The calibration is different from the one in the main text

in that the initial outstanding debt (w−1) is 0.5. The yellow line shows the solution for optimal policy under

commitment. The green line shows the solution for optimal policy under discretion. The purple line shows

the solution for optimal policy under discretion, but with maturity of debt in period 0 at the value optimal

with no shock.
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Figure A.5: Medium-run policy functions with flexible prices

Note: The figure shows policy functions for output, inflation, nominal interest rates, and taxes (with respect to

x0) in the medium run with optimal monetary and fiscal policy under discretion when prices are fully flexible

in period 1. The vertical yellow line shows the optimal value of maturity of debt (x0= 0.4). The maturity

value of debt (w0) is fixed at the optimal value (0.6875).

A.7.4 Policy functions: Fully flexible prices

Figure A.5 shows, for the case of flexible prices in period 1, the most relevant policy function,

that is, how the endogenous variables change with x0. The key result is that period 1 inflation

is decreasing with maturity of debt inherited from period 0, even under fully flexible prices.

With flexible prices, output in period 1 is exogenous. Unlike the sticky price baseline case

presented in the main text, here, due to the Fisher effect, the nominal rate in period 1 is

decreasing in x0, because period 2 inflation decreases with x0. Note that Proposition 2 shows

that the effect on nominal rate of x0 is second-order under flexible prices, as the Fisher

effect is not present in Proposition 2. As a result, the nonlinear solution here is capturing

a quantitatively small effect. The effect on inflation however, is first-order, as shown in

Proposition 2, and also clear here.

Figure A.6 shows, for the case of flexible prices in period 1, the period 1 policy function

with respect to w0. As the optimal debt maturity is lower here, and the condition for the case

of flexible prices in Proposition 2 much weaker, the policy functions for inflation and interest

rates are upward sloping here for both levels of x0, unlike the sticky price baseline case above

18



Figure A.6: Medium-run policy functions with flexible prices

Note: The figure shows policy functions for output, inflation, nominal interest rate, and taxes (with respect to

w0) in the medium run in the model with optimal monetary and fiscal policy under discretion when prices are

fully flexible in period 1. The results are shown for two different maturities of debt (x0). x0= 0.4 constitutes

the optimal maturity. The vertical yellow line shows the optimal maturity value of debt (w0 = 0.6875).

in Figure A.3.

A.7.5 Nonlinear Utility

We have as the exact nonlinear utility

logCt − χLt = log Yt − χ1−θγY 1−θ
t − χ(1− γ)Yt

(
Πt

zt

)θ

− χf (Tt)

= log Yt − χ1−θγY 1−θ
t − χ(1− γ)Yt

(
Πt

Πt

Y −1
t (Πt−1)+1

)θ

− χf (Tt)

= log Yt − χ1−θγY 1−θ
t − χ(1− γ)Yt

(
Y −1
t (Πt − 1) + 1

)θ − χf (Tt)

≡ g(Yt,Πt)− χf (Tt)
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Figure A.7: Period 1 policy functions with and without utility approximation

Note: The figure shows policy functions for inflation and nominal interest rate (with respect to x0) in the

medium run in the model without and without approximated loss function for the government.

while we use the approximation in the main text

g (Yt,Πt)− g
(
Ȳ , Π̄

)
= −1

2
χ2 (1− γ) θ (θ − 1)

[
Π̃2

t +

(
1− γθ (1− θ)

(1− γ) θ (θ − 1)

)
Ỹ 2
t

]
= −1

2

[
Π̃2

t + λyỸ
2
t

]
,

and for taxes

χf ′′ (T̄)T 2
t ,

to write the quadratic objective as

−1

2

[
Π̃2

t + λyỸ
2
t

]
− 1

2
λTT

2
t .

We show in Figure A.7 policy functions for period 1 from an example where we compare

the solutions using the exact nonlinear utility (where for f (Tt) we use a quadratic function)

and the quadratically approximated utility. As can be seen, the results are the same.

20



B Details on estimation of λT

B.1 LP-IV estimator

Following Ramey and Zubairy (2018) and their notation, consider a local projection (LP)-

IRF of inflation and taxes to a fiscal shock at some horizon h,

h∑
j=0

yt+h = my,h

h∑
j=0

gt+j + γh + ϕh(L)ζt−1 + ωt+h,

where
∑h

j=0 yt+h is cumulative inflation or tax (π or T ),
∑h

j=0 gt+j is cumulative fiscal shock

variable, ζt−1 is the vector of controls, and ωt+h is the regression residual.

The object of interest is the estimator my,h (with y = π or T ). As in Ramey and Zubairy

(2018), we consider an IV estimator my,h , where we use the Ramey news variables and the

Blanchard-Perotti shock as IVs for the fiscal shock. We use the data for all variables as

provided by Ramey and Zubairy (2018). Our focus in the main text is on the horizon of 16

quarters (h = 16).

These LP-IV estimators can be correspondingly represented as

m̂π,h = e′1(X
′PX)−1X ′Pπ, (B.1)

m̂T,h = e′1(X
′PX)−1X ′PT, (B.2)

where X is the matrix of regressors with the fiscal shock placed first; P = W (W ′W )−1W ′,

where W is the matrix with instruments and exogenous controls; e1 = (1, 0, . . . , 0)′; and π

and T are vectors with the time series corresponding to cumulative inflation and cumulative

taxes with a lead h periods ahead.

Let the sample size be N. Under appropriate regularity conditions, these estimators are√
N consistent: m̂π,h = mπ,h + Op

(
1√
N

)
and m̂T,h = mT,h + Op

(
1√
N

)
. Moreover, m̂π,h and

m̂T,h have a joint asymptotically normal distribution with some covariance matrix Ω.
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B.2 Asymptotic representation of ratio of estimators

We are interested in the asymptotic variance of the ratio g(mπ,h,mT,h) =
mπ,h

mT,h
.74 First, Taylor

theorem applied to g(mπ,h,mT,h) gives

m̂π,h

m̂T,h

− mπ,h

mT,h

=
(m̂π,h −mπ,h)

mT,h

− mπ,h(m̂T,h −mT,h)

m2
T,h

+ op

(
1√
N

)
, (B.3)

since ∂g(mπ,h,mT,h) = ( 1
mT,h

,−mπ,h

m̂2
T,h

)′. Second, by the Delta theorem,
m̂π,h

m̂T,h
is also asymptoti-

cally normal with mean
mπ,h

mT,h
and asymptotic variance σ2

h = ∂g(mπ,h,mT,h)Ω(∂g(mπ,h,mT,h))
′.

B.3 A simple method to compute standard errors for ratios of LP-

estimators

The conventional Delta method approach to inference would require estimation of Ω, using

a joint Newey-West (NW) estimator for (m̂π,h, m̂T,h). Such a general estimator would give

more information than needed for our purposes. We therefore, propose an alternative way of

estimating σ2
h that only uses readily available Newey-West estimators for the individual LP

estimators. In particular, we show that the (asymptotic) standard error for the estimated

ratio at horizon h, i.e.
m̂π,h

m̂T,h
, coincides with the NW error for IRF of Zh, a suitably chosen

linear combination of π, T that is defined below.

B.3.1 Equivalence with standard Delta method

While our method is simpler and easier to implement than the Delta method, it leads to the

same answer as the Delta method. To see the equivalence between our method and the Delta

74Here, we use the notation on local projection coefficients to be consistent with that used in Ramey and

Zubairy (2018) for clear comparison. In text, we refer to them as ÎRFπ(j) and ÎRFT (j) to connect them
better to the model.
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method, first note that Equation (B.3) implies

V ar

[
m̂π,h

m̂T,h

− mπ,h

mT,h

]
= V ar

[
m̂π,h −mπ,h

mT,h

− mπ,h(m̂T,h −mT,h)

m2
T,h

]

+ 2Cov

(
Op

(
1√
N

)
, op

(
1√
N

))
+ o

(
1

N

)
,

= V ar

[
m̂π,h

mT,h

− mπ,hm̂T,h

m2
T,h

]
+o

(
1

N

)
,

= V ar[e′1(X
′PX)−1X ′P (

1

mT,h

π − mπ,h

m2
T,h

T )] + o

(
1

N

)
,

= V ar[e′1(X
′PX)−1X ′PZh] + o

(
1

N

)
,

where Zh = 1
mT,h

π − mπ,h

m2
T,h
T .

Since by definition, limN→∞NV ar[
m̂π,h

m̂T,h
] = σ2, the asymptotic variance of

m̂Z,h = e′1(X
′PX)−1X ′PZh

is σ2
h. That is, the asymptomatic variance of the LP IRF estimator for outcome variable Zh

with the same controls, is also σ2
h.

Thus, our method indeed leads to the same answer as the standard Delta method and they

are equivalent for our purposes.

B.3.2 Computing the standard deviation of m̂Z,h

To estimate asymptotic standard deviation of m̂Z,h, one can use the Newey-West estimator of

IRF of the shock on Ẑh for each horizon h, where

Ẑh =

(
1

m̂T,h

π − m̂π,h

m̂2
T,h

T

)
= Zh +OP

(
1√
N

)
.

Thus, our method first constructs the variable Ẑh = 1
m̂T,h

π − m̂π,h

m̂2
T,h
T using the estimates

m̂T,h and m̂π,h. Then, we estimate LP-IV impulse response of the variable Ẑh to the fiscal

shock.75 The standard error of the LP-IV coefficient m̂Z,h then gives σ̂2
h, an estimate of the

standard error σ2
h.

75Note that we use the variable Ẑh instead of Zh. This is however, not an issue as it is a consistent estimator.
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B.4 Bayesian interpretation of the estimator

Let θ define the vector of all the calibrated parameters that determine the behaviour of the

model outside of the ZLB. Let r(λT , θ) = πb(λT ,θ)
Tb(λT ,θ)

be the ratio of the cumulative IRF for

inflation and taxes, outside of the ZLB, implied by the model. Define fθ(
mπ,h

mT,h
) as a function

that maps the IRF ratio
mπ,h

mT,h
to λT ,

λT = fθ(
mπ,h

mT,h

) = argmin
λ

(
mπ,h

mT,h

− r(λ, θ))2. (B.4)

We want to compute a posterior distribution of λT given time series observations outside of

ZLB (W,X, π, T ) conditional on calibrated parameters θ. Let us assume that the prior on λT

is uninformative. Since fθ(
mπ,h

mT,h
) is a differentiable function of the ratio

mπ,h

mT,h
, the implied prior

distribution for
mπ,h

mT,h
has no mass points and is absolutely continuous at the true parameter

value
mπ,h

mT,h
. Such a prior meets the conditions for Bernstein-von-Mises theorem (see Theorem

10.4 in Van der Vaart (2000)).

By this result, for a large sample N , the posterior distribution for the ratio
mπ,h

mT,h
can be

well approximated by a normal distribution with mean
m̂π,h

m̂T,h
and variance σ̂2. One can then

estimate the posterior distribution of λT using Monte Carlo computations:

1. Generate sample {mb
π,h

mb
T,h

}Bb=1 using i.i.d. draws from N(
m̂π,h

m̂T,h
, σ̂2).

2. Replace negative draws of
mb

π,h

mb
T,h

with zeros. (We are imposing the uninformative prior

with non-negative support on the ratio.)

3. Compute the mean, the median, and the standard deviation of the sample {fθ(
mb

π,h

mb
T,h

)}Bb=1.

4. Plot a kernel density/histogram for fθ(
mb

π,h

mb
T,h

) using only draws with positive values of

mb
π,h

mb
T,h
.

In our application, B = 1000 and the number of draws that had negative values of
mb

π,h

mb
T,h

were 31, or 3.1%.

Estimated this way, the posterior mean of λT is 0.0057 while the 68% probability interval is

(0.00187, 0.00879). These estimates are almost identical to those from our baseline approach

reported in Figure 9, where the mean is 0.0052 and the 68% confidence interval is (0.00201,

0.00921). These new estimates’ implied confidence interval for output effects of QE2 is also

essentially the same as that in Table 4, at (0.21%, 2.17%).
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C Details on the Quantitative Model

This section details the derivation of the quantitative model and describes the numerical

solution method.

C.1 Functional forms and notation

Functional forms for utility are given by

u (C, ξ) = ξC̄
1
σc
C1− 1

σc

1− 1
σc

,

v (Ht, ξ) = ξλ
H1+ω

t ,

1 + ω

g (G, ξ) = ξḠ
1
σc
G1− 1

σc

1− 1
σc

.

Variables in the steady state are denoted by a bar. In the steady state, ξ̄ = 1 and hours are

scaled so that Ȳ = 1. Recall that the production function of the firms in linear in labor so that

yt(i) = Ht(i). In a symmetric equilibrium this implies thatHt = Yt so that v(Ht, ξt) = v(Yt, ξt).

With some abuse of notation we will use the notation vy for vh.

The following notation and normalizations are also used:

σ =
C

Y
σc

κ = θ
(σ−1 + ω)

d′′

C.2 Efficient equilibrium

The efficient equilibrium is an important benchmark in the model. Using Gt = Ft − s(Tt) =

F − s(Tt), the social planner’s problem can be written as

maxu (Ct, ξt) + g (F − s(Tt))− v (Yt)

subject to

Yt = Ct + F.
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Formulate the period Lagrangian

Lt = u (Ct, ξt) + g (F − s(Tt))− v (Yt)

+ ϕ1t (Yt − Ct − F ) .

First-order conditions (where all the derivatives should be equated to zero) are

∂Lt

∂Yt
= −vY + ϕ1t,

∂Lt

∂Ct

= uC(.) + ϕ1t [−1] ,

∂Lt

∂Tt
= −gG(.)s′(Tt),

which yields

uC = vY ,

gG (−s′(Tt)) = 0.

The assumption is that in steady state

s′(T̄ ) = 0,

but s
′′
(0) > 0. Efficient allocation thus requires

uC = vY , Tt = T̄ .

C.3 Commitment Solution in the Quantitative Model

The optimal monetary and fiscal policy under commitment problem is relatively standard

and can be solved by formulating a Lagrangian, similar to that in Section A.3. Again, a

key property of the solution under commitment is that the maturity structure of debt is

irrelevant. Thus, using similar arguments as in the simple model, it can be shown that ρt

does not affect the solution in the quantitative model under monetary and fiscal commitment.

The solution was computed via first-order approximation of the equilibrium conditions. The

solution algorithm used was based on Eggertsson and Woodford (2003) using the toolkit in

Eggertsson et al. (2019).
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C.4 MPE in the Quantitative Model

The policy problem is

J (lt−1, ρt−1, ξt) = max [U (Λt, ξt) + βEtJ (lt, ρt, ξt+1)]

subject to

St(ρt)lt = (1 + ρt−1Wt(ρt−1)) lt−1Π
−1
t + (F − Tt) ,

1 + it =
uC (Ct, ξt)

βf e
t

,

it ≥ 0,

St(ρt) =
1

uC (Ct, ξt)
βget ,

Wt(ρt−1) =
1

uC (Ct, ξt)
βjet ,

θYt [uC (Ct, ξt)− vy (Yt, ξt)] + uC (Ct, ξt) d
′ (Πt)Πt = βhet ,

Yt = Ct + F + d (Πt) ,

f e
t = Et

[
uC (Ct+1, ξt+1)Π

−1
t+1

]
= f̄ e (lt, ρt, ξt) ,

get = Et

[
uC (Ct+1, ξt+1)Π

−1
t+1 (1 + ρtSt+1(ρt))

]
= ḡe (lt, ρt, ξt) ,

het = Et [uC (Ct+1, ξt+1) d
′ (Πt+1)Πt+1] = h̄e (lt, ρt, ξt) ,

jet = Et

[
uC (Ct+1, ξt+1)Π

−1
t+1 (1 + ρt−1Wt+1(ρt−1))

]
= j̄e (lt, ρt, ξt) .

Formulate the period Lagrangian:

Lt = u (Ct, ξt) + g (F − s(Tt − T ))− v (Yt) + βEtJ (lt, ρt, ξt+1)

+ ϕ1t

(
St(ρt)lt − (1 + ρt−1Wt(ρt−1)) lt−1Π

−1
t − (F − Tt)

)
+ ϕ2t

(
βf e

t −
uC (Ct, ξt)

1 + it

)
+ ϕ3t (βg

e
t − uC (Ct, ξt)St(ρt)) + ϕ4t (βj

e
t − uC (Ct, ξt)Wt(ρt−1))

+ ϕ5t (βh
e
t − θYt [uC (Ct, ξt)− vy (Yt, ξt)]− uC (Ct, ξt) d

′ (Πt)Πt)

+ ϕ6t (Yt − Ct − F − d (Πt)) + ψ1t

(
f e
t − f̄ e (lt, ρt, ξt)

)
+ ψ2t (g

e
t − ḡe (lt, ρt, ξt))

+ ψ3t

(
het − h̄e (lt, ρt, ξt)

)
+ ψ4t (j

e
t − j̄e (lt, ρt, ξt)) + γ1t (it − 0) .
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First-order conditions (where all the derivatives should be equated to zero) are

∂Ls

∂Πt

= ϕ1t

[
(1 + ρt−1Wt(ρt−1)) lt−1Π

−2
t

]
+ ϕ5t

[
−uCd

′′
Πt − uCd

′
]
+ ϕ6t [−d′] ,

∂Ls

∂Yt
= −vY + ϕ5t [−θuC + θYtvyy + θvy] + ϕ6t,

∂Ls

∂it
= ϕ2t

[
uC (1 + it)

−2]+ γ1t,

∂Ls

∂St

= ϕ1t [lt] + ϕ3t [−uC ] ,

∂Ls

∂Wt

= ϕ1t

[
ρt−1lt−1Π

−1
t

]
+ ϕ4t [−uC ] ,

∂Ls

∂Ct

= uC + ϕ2t

[
−uCC (1 + it)

−1]+ ϕ3t [−uCCSt(ρt)] + ϕ4t [−uCCWt(ρt−1)]

+ ϕ5t [−θYtuCC − uCCd
′Πt] + ϕ6t [−1] ,

∂Ls

∂Tt
= gG (−s′(Tt)) + ϕ1t,

∂Ls

∂lt
= βEtJl (lt, ρt, ξt+1) + ϕ1t [St(ρt)] + ψ1t

[
−f̄ e

l

]
+ ψ2t [−ḡel ] + ψ3t

[
−h̄el

]
+ ψ4t (−j̄el ) ,

∂Ls

∂ρt
= βEtJρ (lt, ρt, ξt+1) ,

∂Ls

∂f e
t

= βϕ2t + ψ1t,

∂Ls

∂get
= βϕ3t + ψ2t,

∂Ls

∂jet
= βϕ4t + ψ4t,

∂Ls

∂het
= βϕ5t + ψ3t.

The complementary slackness conditions are

γ1t ≥ 0, it ≥ 0, γ1tit = 0.

The envelope conditions are

Jl (lt−1, ρt−1, ξt) = ϕ1t

[
− (1 + ρt−1Wt(ρt−1))Π

−1
t

]
,

Jρ (lt−1, ρt−1, ξt) = ϕ1t

[
−Wt(ρt−1)lt−1Π

−1
t

]
.
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C.5 Steady state

A MPE steady state is nontrivial to characterize because, generally, the first order conditions

involve derivatives of the unknown expectation functions, as can be seen from the above. The

solution method used here relies on the production subsidy, and the assumption that s′(T̄ ) = 0

discussed in section C.2, so that the MPE steady state is efficient. Define the real value of

debt as Dt = Stlt.

Proposition 5 There is a MPE steady state in which Π̄ = 1, Ȳ = 1, ı̄ = β−1 − 1, γ̄1 = ϕ̄1 =

ϕ̄2 = ϕ̄3 = ϕ̄4 = ϕ̄5 = ψ̄1 = ψ̄2 = ψ̄3 = ψ̄4 = 0, ϕ̄6 = ūc = v̄Y and T = T̄ , Dt = D̄ = 1
1−β

(F̄−T̄ ).

Proof. The proof of this proposition is simply an application of guess-and-verify, that is, it is

easy to verify that the steady state stated above satisfies all the first-order conditions of the

government’s problem from the last section as well as the constraints.

An important element of the proposition above is that it defines the steady state debt

as D̄ = Sl = β
1−ρβ

l which implies that the MPE does not provide a theory of the optimal

maturity in the efficient steady state; it can be any ρ. While an obvious limitation of the

theory, it is a major convenience as a practical matter, for it implies that we can choose ρ

based directly on the data when approximating the dynamics of the model.

The fact that the model has a simple closed-form solution for the steady state allows us

to side step the computational problem addressed in Klein et al. (2008). The problem is that

the steady state will, in general, depend on the unknown expectation functions. Klein et al.

(2008) solve this problem by relying on a successive set of approximations to the decision rules

with polynomial functions. No such approximation is required here, for in the efficient steady

state the Lagrange multipliers on the relevant constraints are zero and so, they drop out. The

key to this simplification is the full efficiency of the steady state.

The most important assumption for the computation of the MPE is that we assume the

existence of an efficient steady state at a positive level of public debt. This allows us to

capture the most important nonlinearity embedded in the government budget constraint to a

first order and allows for a straightforward approach to approximate the expectation functions

as described above. As shown in the text, in the MPE, if debt goes above this value, taxes rise

and debt converges back to the steady state over time and debt maturity similarly converges

to a finite value. This assumption implies that, up to the steady state value of debt and taxes,

there are no taxation costs; however, once above steady state, the cost of taxation increases.

One interpretation of this assumption is that it is a reduced-form way of capturing that

there is the optimal level of debt is positive, as has been found in the literature that emphasizes

the liquidity role of government debt (see, for example, Woodford (1990) and Aiyagari and

McGrattan (1998)). Hence, under this interpretation, the function s(.) is a reduced form way
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of capturing the cost and benefits of public debt, and at the steady state they are exactly

offsetting each other. Integrating this motivation for holding public debt explicitly remains

an important extension of the model. Another important limitation of the approach is that,

since the steady state is efficient, it does not provide a theory of optimal steady state debt

maturity as we noted above.

C.6 Loss Function

We can derive the loss function for the government in the quantitative model as well using

a quadratic approximation of utility. This derivation here makes clear the comparison of the

weights in the loss function that is mentioned in the text. For household utility, we need to

approximate the following three components:

u (Yt − F − d(Πt), ξt) ; g (F − S(Tt − T ), ξt) ; v (Yt, ξt) .

Standard manipulations that are prevalent in the literature give, as a second-order approxi-

mation to household utility,

1

2

−σc
(
T̂ 2
t

(
F − Ȳ

)
s′′
(
T̄
)
+ Fd′′(1)Π̂2

t

)
+ 2σcŶt

(
−Ȳ + F ξ̂t + F

)
+ Ŷ 2

t

σc
(
F − Ȳ

) +

1

2
Ȳ

(
d′′(1)Π̂2

t

F − Ȳ
+ ξ̂t

(
2σc
σc − 1

− 2Ŷt
F − Ȳ

)
+

2σc
σc − 1

)

− 1

2
2λ
(
ξ̂t + 1

)
ŶtȲ

ω − 1

2

2λ
(
ξ̂t + 1

)
Ȳ ω+1

ω + 1
− 1

2
λωŶ 2

t Ȳ
ω−1 + tip,

which in turn is given as

1

2

(
Ŷ 2
t

(
1

Fσc − σcȲ
− λωȲ ω−1

)
+ T̂ 2

t

(
−s′′

(
T̄
))

− 2
(
ξ̂t + 1

)
Ŷt
(
λȲ ω − 1

)
− d′′(1)Π̂2

t

)
+ tip.

Multiply everything by 1
ω+σ−1 and consider efficient equilibrium in the steady state (uC = vY ),

together with the scaling that λȲ ϕ = 1 and Ȳ = C̄ + F = 1, to obtain

−
σT̂ 2

t s
′′ (T̄)

2 (ωσ + 1)
− σd′′(1)Π̂2

t

2 (ωσ + 1)
− Ŷ 2

t

2
.

So, finally, the approximation of utility yields

−1

2

[
λππ

2
t + Ŷ 2

t + λT T̂
2
t

]
,
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where

λT =
s′′
(
T̄
)

ω + σ−1
, λπ =

d′′(1)

(ω + σ−1)
=
θ

κ
.

In the calibration of the quantitative model, we normalize the weight on inflation λπ to 1 and

instead parameterize the weight on output, λy.

C.7 First-order Approximation of MPE at Positive Interest Rates

The approximation method relies on log-linear approximation of the FOCs of the government’s

problem, as well as the equilibrium constrains around the MPE steady state in the proposition

above. Below, the log-linear approximation is reported at positive interest rate where the

government’s first-order conditions have been combined in the first two conditions:

λππt + κ−1Ŷt = [κ−1 (1− ρ)σ−1 + β−1]
D̄

T̄
λT T̂t,

[1−βπlκ−1 (1− ρ)σ−1− (Yl+σπl) (1− ρ)σ−1+ρβSl(1−ρ)]T̂t = − (ψ)λ−1
T βπlκ

−1Yt+EtT̂t+1,

Ŷt = EtŶt+1 − σ(̂ıt − Etπt+1 − r̂et ),

πt = κŶt + βEtπt+1,

l̂t +
ρβ

1− ρβ
ρ̂t = β−1l̂t−1 + β−1 ρβ

1− ρβ
ρ̂t−1 − β−1πt − (1− ρ)Ŝt − ψT̂t,

Ŝt = −ı̂t + ρβEtŜt+1,

Ŝt − Ŵt = ρ̂t − ρ̂t−1.

The challenge is that the expectation functions πl, Sl, yl are unknown. Provided that the

expectation functions are differentiable, the solution of the model is of the form

πt = πllt−1 + πρρ̂t−1 + πrr
e
t , Ŷt = Yllt−1 + Yρρ̂t−1 + Yrr

e
t , Ŝt = Sllt−1 + Sρρ̂t−1 + Srr

e
t ,

ı̂t = illt−1 + iρρ̂t−1 + irr
e
t , T̂t = Tllt−1 + Tρρ̂t−1 + Trr

e
t , and lt = lllt−1 + lρρ̂t−1 + lrr

e
t ,

where πl, Yl, Sl, il, ll, Tl, πr, Yr, Sr, ir, lr, and Tr are unknown coefficients to be determined.

The final step to computing the solution is then to plug in the conjectured solution and to

match coefficients along with the requirement that expectations are rational.

C.8 Solution at ZLB

Debt is kept fixed at the ZLB at lL . At the zero lower bound, ı̂t = 1 − β−1. Given the

specific assumptions on the two-state Markov shock process, the equilibrium is described by
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the following system of equations:

Ŷt = −σ (−πl(1− µ)lt − ret − µπS + ı̂t) + (1− µ)Yllt + µYS,

π̂t = β (πl(1− µ)lt + µπS) + κYt,

ı̂t = 1− β−1,

lt = lS,

Ŝt = −ı̂t + ρβ ((1− µ)SllS + µSS) ,

where variables with a l subscript denote the solution we compute at positive interest rates,

and variables with a S subscript denote values at the ZLB. The solution to this system is

Ŷt = YS =
βπl(µ− 1)lS

κ
− (1− βµ) (βπl(1− µ)2lS − κ (lS (πl(µ− 1)σ + (µ− 1)Yl)− σreS + σiS))

κ(κµσ − (1− µ)(1− βµ))
,

π̂t = πS =− βπl(1− µ)2lS − κ (lS (πl(µ− 1)σ + (µ− 1)Yl)− σreS + σiL)

κµσ − (1− µ)(1− βµ)
,

ı̂t = iS =1− β−1, lt = lS,

Ŝt = SS =
ρβ(1− µ)SllS − ı̂t

1− ρβµ
,

where the solution for variables with a l subscript has already been provided above.

C.9 Calibration and Sensitivity Analysis

C.9.1 Debt maturity data

The model assumes a consolidated government budget constraint so that, for government

debt, the relevant measure is all government debt held by the public (thus, government debt

held by the Federal Reserve is netted out). Reserves issued by the Federal Reserve are treated

as short-term government debt. The duration of the consolidated government’s debt is given

in Figure C.8.76 The vertical dashed lines are important events associated with the Federal

Reserve buying long-term treasury bonds. Around those dates, the maturity of outstanding

government debt declined. In generating this figure, we first use estimates from Chadha et

al. (2013) on the duration of Treasury debt held outside the Federal Reserve, which we then

augment with data on reserves issued by the Federal Reserve that is available from public

sources (FRED).

The baseline calibration of the model relies on the QE2 program of November 2010. Base-

76In generating this figure, we first use estimates from Chadha et al. (2013) on the duration of Treasury
debt held outside the Federal Reserve, which we then augment with data on reserves issued by the Federal
Reserve that is available from public sources (FRED).
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line maturity is 16.87 q, which is the level at the beginning of the QE2 program, resulting in

ρ = 0.9502. As a measure of the effects on the average maturity of outstanding government

debt from QE2, the difference is taken between the start of QE2 and the start of MEP (thus,

the difference between the third and fourth lines in Figure C.8). That is, according to this

measure, the reduction in maturity due to QE2 was from 16.87 q to 16.2 q, with a difference

of 0.67 q. This implies a change in ρ from 0.9502 to 0.9477 as documented in the table in the

main text. QE3 is defined as the sum of the MEP and QE3 programs (given by the fourth,

fifth, and sixth lines in Figure C.8). Thus, as a measure of the effects on the average maturity

of outstanding government debt from QE3, we consider the end of the sample in Figure C.8,

where the maturity is at 15.07 q. Compared to the baseline maturity, the difference is then

1.8 q. Moreover, this implies a change in ρ from 0.9502 to 0.9430 as documented in the table

in the main text.

Figure C.8: Consolidated US Government Debt Maturity

Note: The figure presents the maturity of outstanding US government debt adjusted for reserves issued by

the Federal Reserve. The vertical dashed lines are important events associated with the Federal Reserve

buying long-term Treasury bonds: November 2008 and March 2009 (Quantitative Easing 1); November 2010

(Quantitative Easing 2 (QE 2)); September 2011 (Maturity Extension Program (MEP)); and September 2012

and December 2012 (Quantitative Easing 3 (QE3)).

C.9.2 Bounds on output effects

For the sensitivity analysis on bounds on output effects , we chose reS to generate an output

drop of 7.5%.77 We keep, however, the same value for the persistence of the shock µ as we

vary λT , which maps onto the expected duration of the ZLB. This latter choice implies that

as we vary λT , the model generates different inflation drops at the ZLB. Table C.1 shows this

77The numbers reported are essentially unchanged even if we maintain a fixed reS when we do this sensitivity
analysis—up to a first decimal point.
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result and the responses of several other key empirical moments (recall that in the baseline

calibration, other than the drops in output and inflation at the ZLB, other moments are out-

of-sample/untargeted). Thus, inflation at the ZLB is -4.3% for λlowT while it is -0.04% for λhighT .

Furthermore, the estimated effects of QE on various yields and on inflation compensation are

also affected by the choice of λT .

Table C.1: Untargeted data and model moments with different degrees of tax smoothing

Moments Data Baseline λT λhighT λlowT

Zero-lower-bound output drop −7.50% −7.50% −7.50% −7.50%
Zero-lower-bound inflation drop −2.50% −2.50% −0.04% −4.30%
Zero-lower-bound duration 6− 8 qt 8.4 qt 8.4 qt 8.4 qt

∆i(8), QE2 −16 bp −10.24 bp −33.5 bp 1.45 bp
∆i(40), QE2 −30 bp −11.2 bp −20.81 bp 1.62 bp
∆i(40), QE3 −46 bp −34.9 bp −57.10 bp 3.84 bp
∆π(40), QE2 5 bp 14.34 bp 9.85 bp 6.30 bp

C.9.3 Bounds on output effects matching inflation at the ZLB

In this sensitivity, we keep µ fixed as we vary λT around the point estimate but recalibrate κ

so as to match the drop in inflation at the ZLB. We report results from this exercise for the

output effects of QE2 in the first row of Table C.2 and effects on future inflation and yields

in the rest of the rows of Table C.2. As can be seen, this tends to make the effect of QE

somewhat larger.

Table C.2: Output effects and untargeted data and model moments when recalibrating to
match zero-lower-bound inflation drop

Moments Data Baseline λT λhighT λlowT

QE2 ∆Output 1.65% 4.00% 0.40%

Zero-lower-bound output drop −7.50% −7.50% −7.50% −7.50%
Zero-lower-bound inflation drop −2.50% −2.50% −2.50% −2.50%
Zero-lower-bound duration 6− 8 qt 8.4 qt 8.4 qt 8.4 qt

∆i(8), QE2 −16 bp −10.24 bp −20 bp −0.04 bp
∆i(40), QE2 −30 bp −11.2 bp −18 bp −1.30 bp
∆π(40), QE2 5 bp 14.34 bp 57.7 bp 3.74 bp
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C.9.4 Recalibrating to match financial market effects

Here, we estimate (λy, κ, λT , r
e
S, µ) to match five moments exactly: the drop in inflation and

output at the ZLB, the ratio of the inflation response to the tax response to match RZ’s

evidence, and the effects of QE2 on yields and expected inflation to match KVJ’s evidence.

Table C.3 contains the parameter values from this exercise while Table C.4 shows the

model’s predictions for the output effects of QE2 and QE3. The parameter values are similar

to our baseline calibration reported earlier in Table 1. The output effects of QE are also very

similar to those in the baseline exercise reported earlier in Table 2, where we did not match

the empirically estimated effects of QE2 on yields and expected inflation. The reason is that

in the baseline exercise, the model generated smaller effects on long-term yields but bigger

effects on expected inflation compared with KVJ’s estimates. These two forces essentially

have equal but opposite effects for output in the model.

Table C.3: Calibrated/estimated parameter values in the quantitative model that match the
financial-market effects of quantitative easing

Parameter Value Parameter Description

β 0.99 Discount factor
σ 0.5 Scaled IES
κ 0.027 Slope of Phillips curve
λy 0.0029 Weight on output
λT 0.0052 Weight on taxes
reS −0.016 Shock size
µ 0.84 Shock persistence
ρ(pre-QE2) 0.9502 Baseline debt maturity
∆ρ(QE2) 0.0024 Change in debt maturity
∆ρ(QE3) 0.0072 Change in debt maturity
ψ 7.2 Debt-to-taxes ratio

b̂S 0.30 Initial debt

Table C.4: Output effects of QE2 and QE3 in the quantitative model that matches financial-
market effects

Model Specification ∆Output, QE2 ∆Output, QE3

Matching financial-market effects 1.65% 5.15%
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D Independent central bank model

D.1 Central bank balance sheet

We discuss in more detail the balance sheet of an independent central bank. In period 0, the

central bank has one-period liability, dc0 (central bank interest bearing reserves), and both one-

period, bc0, and two-period, lc0, assets. In period 1, the central bank issues one-period liability,

dc1, and buys one-period assets, bc1. Central bank transfers to the Treasury are denoted by T c.

The initial net asset position of the central bank is lc−1.

The budget constraints in the three periods are then

lc0 + {bc0 − dc0} =
lc−1

Π0

− T c
0 , (D.1)

{bc1 − dc1} = (1 + i0)
{bc0 − dc0}

Π1

− T c
1 , (D.2)

0 = (1 +R0)
lc0

Π1Π2

+ (1 + i1)
{bc1 − dc1}

Π2

− T c
2 . (D.3)

For one period asset and liability, only the net position matters, which are denoted by the

curly brackets as {bc0 − dc0} and {bc1 − dc1}.

D.2 Maturity value characterization

The budget constraints (D.1)-(D.3) above can be rewritten in terms of the minimum set of

state variables in interest inclusive terms, which in period 0 is wc
−1, in period 1, wc

0 and xc0,

and in period 2, W c
1 :

W c
1 ≡ wc

1 + x0
wc

0

Π1

,

0 =
W c

1

Π2

− T c
2 ,

W c
1 =

wc
0

Π1

+ i1(1− x0)
wc

0

Π1

− (1 + i1)T
c
1 ,

x0
wc

0

1 +R0

+ (1− x0)
wc

0

1 + i0
=
wc

−1

Π0

− T c
0 ,

where, wc
0 ≡ (1 + R0)l

c
0 + (1 + i0) (b

c
0 − dc0), w

c
1 ≡ (1 + i1) (b

c
1 − dc1), w

c
−1 = lc−1, x0 ≡

(1+R0)lc0
(1+R0)lc0+(1+i0)(bc0−dc0)

, and (1− x0) ≡
(1+i0)(bc0−dc0)

(1+R0)lc0+(1+i0)(bc0−dc0)
.

In this notation, wc
0 measures the net asset position of the central bank, written in terms
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of maturity value (that is inclusive of interest payments). Moreover, x0 measures the maturity

composition of the central bank net asset position in period 0 – the ratio of long-term assets

in the net asset position. x0 thus measures the maturity mismatch in the central bank balance

sheet. If x0 = 0, there is no maturity mismatch. If the central bank issues dc0 to buy lc0, this

variable changes while if the central bank issues dc0 to buy bc0, this variable does not change.

wc
1 is the net asset position of the central bank in period 1, again written in terms of maturity

value. The state variable in period 0 is wc
−1, in period 1, the state variables are wc

0 and xc0,

and in period 2, the state variable is W c
1 .

These are the budget constraints that appear in the main text. The loss function for the

central bank is already discussed in text.

D.3 Discussion

Recall that for the consolidated government, the game analyzed was one in which the govern-

ment starts out with debt but does not have government expenditures. The government thus

has to concern itself with how to collect taxes over the three periods. To obtain an analog

for an independent central bank, consider a central bank that has a negative asset position,

which it needs to improve on in order to reach a balanced position in the terminal period. This

amounts to assuming that lc−1 = −b−1, as in the equivalence proposition. More realistically,

one could assume that the central bank starts with a positive capital position. The general

point is that it faces essentially the same policy problem, except that we differently interpret

the variables that enter the budget constraints.

The equivalence proposition stipulates that the model can alternatively be interpreted as

referring to an independent central bank with balance sheet concerns. An important consider-

ation, which we leave for future research to explore, is how to empirically identify λv under this

alternative interpretation since here it is not appropriate to use the consolidated government’s

budget constraint to parameterize the model, as we did in the quantitative analysis.78

E Addendum to Section 4.5 with a numerical example

This Section expands upon the discussion in the main text in Section 4.5 and provides a

numerical example that helps clarify the arguments made. A considerable literature (see for

example, Missale and Blanchard (1994)) assumes that if more debt is long-term then there is

78In an earlier version of this paper, Bhattarai, Eggertsson, and Gafarov (2015), we attempted this by using
data on the size and composition of the Federal Reserve balance sheet to parameterize the budget constraints
in a similar model. λv, however, was calibrated within the context of the model and without using any
additional evidence as we did in the main analysis.
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more to gain from an inflation policy (for a similar assumption applied more recently, see for

example Aizenman and Marion (2011) and references therein). The main text of the paper

claims that the reason this literature comes to an apparently different result from the analysis

of MPE in this paper and Calvo and Guidotti (1990, 1992) is that it typically considers the

consequence of an inflation policy over an extended period of time while the MPE contemplates

the benefit of inflation in a period-by-period game in which each period is of the same duration

as the short-term debt.

E.1 Revisiting Missale and Blanchard (1994)

It is helpful to review the model by Missale and Blanchard (1994) to clarify why their re-

sult may appear to contradict the forces in the MPE analyzed in this paper. Missale and

Blanchard (1994) assume directly in their debt accumulation equation that higher inflation

reduces the real value of debt by more if the maturity of outstanding debt is longer. Their

debt accumulation is

Dt = (1 + rt){1−mt(πt − Et−1πt)}Dt−1, (E.1)

where Dt is the real value of debt, rt is the real interest rate, and mt is maturity – a lower mt

denotes shorter maturity.79

To see how this relates to the model of this paper, consider the simple model outlined in

Section 2 in the medium and long runs, and for simplicity, suppose that T1 = 0. Combining

the government budget constraints in periods 1 and 2 yields an expression for taxes in period

2,

T2 = (1 + i1)(1 + i0)
b0

Π1Π2

+ (1 +R0)
l0

Π1Π2

, (E.2)

=
w0

Π1Π2

+ i1(1− x0)
w0

Π1Π2

,

using the notation where b0 is the real value of short-term nominal debt and l0 is the real

value of long-term nominal debt. The second line expresses the budget constraint in terms of

maturity value of the debt w0 and its duration, x0, which is a natural way of expressing the

minimum set of state variables as discussed in the text.

Consider a new inflation policy chosen in period 1 that may extend over both period 1

and 2 or only over period 1. This change in policy is unexpected so that the variables i0 and

79Note that this debt accumulation equation is not derived from first principles in a model with short-term
and long-term nominal debt, as we do in this paper. As Missale and Blanchard (1994) note, this budget
constraint is akin to thinking of long-term nominal debt directly as indexed debt. Here, we simply show what
is used by Missale and Blanchard (1994) and how our model can be related (or not) to the intuition obtained
from this debt accumulation equation.
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R0 are fixed – which in the second line amounts to the assumption that w0 and x0 are given.

(E.2) reveals that T2 is decreasing in inflation in either period 1 or 2, that is T2 is declining

in both. Π1 and Π2. The interest rate, i1, can also play an important role for the effect of

inflation on T2, depending on how much of the debt is short term and other assumptions as

soon will be clear.

Figure E.9: Fiscal Benefit and Debt Duration

Note: The figure shows how the tax burden depends on debt duration for various inflation policies and extent

of price rigidities.

The claim made in the literature is that the benefit of inflation is higher, when more debt

is long-term, that is, a higher amount of l0 relative to b0. It was argued in the main text that

this result fundamentally relies on (i) the horizon of the inflation policy and (ii) the degree of

price rigidities. This argument is made more explicit below by first considering an inflation

policy that applies both to periods 1 and 2.

E.2 Higher inflation in period 1 and 2 and flexible prices

Consider the consequences of the government choosing a new policy in period 1: It announces

a higher inflation for both period 1 and 2, that is Π1 and Π2 and denote the new inflation rate

by Π1 = Π2 = Π∗. The new policy is unexpected and the expectation about gross inflation in

period 0 is 1: E0Π1 = E0Π2 = 1. This implies that 1 + i0 = β−1 and 1 +R0 = β−2.

If prices are flexible then it follows from the consumption Euler equation that 1 + i1 =
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β−1Π2 = β−2Π∗. Substituting this into (E.2) yields

T2 = β−2 b0
Π∗ + β−2 l0

(Π∗)2
. (E.3)

Figure E.9, panel (a), shows the effect on T2 of 10% inflation in periods 1 and 2 assuming

different values for the maturity of the debt x0 – holding fixed the total value of debt issued

in period 0, that is, l0 + b0 = D = 0.5 and β = 0.95, as in the text.80

Consider first the purple line which shows that in the absence of the inflation policy, then

T2 = β−2B = 0.554 and T2 is independent of the duration of debt, that is x0 which shown

on the x-axis. The blue line shows that the tax burden is always lower as a result of the

unexpected inflation policy for all x0. As the figure reveals, however, the fiscal benefit is lower

(T2 is higher) the more debt is short term (that is x0 is low) as suggested by the Missale and

Blanchard (1994) debt accumulation (E.1).

The reason for this result is straight-forward. If the government has short run debt, then

the interest rate will rise on the debt that is rolled over, that is 1+ i1 = β−1Π2 = β−1Π∗. Thus

the inflation in period 2 will not depreciate the real value of the debt. The way this shows up

in (E.3) is that the long-term debt l0 is divided by (Π∗)2 while b0 is only divided by (Π∗) —

this is because the inflation in period 2 will not reduce the real value of the short-term debt

as it is rolled over on the higher interest rate that fully adjusts to the increase in inflation in

period 2. This is precisely the logic for why inflation has bigger benefits the more debt is long

term in Missale and Blanchard (1994), as assumed in their debt accumulation equation (E.1).

As will be shown below, however, this result depends both on assuming flexible prices and on

the horizon of the inflation policy. Consider first the issue of price rigidities.

E.3 Higher inflation in period 1 and 2 and sticky prices

The main text of the paper suggested that this result depended on the assumption that the

interest rate immediately adjusts – as it does under the assumption of fully flexible prices.

If prices are rigid, however, interest rates may or may not immediately change. To see this,

consider the same thought experiment as before, that is, the government announces an increase

in inflation in period 1 for both period 1 and 2. As earlier assume this is unexpected so that

1 + i0 = β−1 and 1 + R0 = β−2. Now, however, let the solution for 1 + i1 take into account

80A little bit of algebra shows that the expression for w0 as you change x0 holding b0 + l0 = D fixed is

w0 = D(1 + i0) + x0
D(1 + i0)(R0 − i0)

(1 +R0)− x0(R0 − i0)
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prices rigidities of the form studied in Section 2 given by the Phillips curve, that is

1 + i1 = β−1

(
Ȳ

Y1

)
Π∗ = β−1

(
Ȳ

κ−1 (Π∗ − 1) + Ȳ

)
Π∗, (E.4)

using the consumption Euler equation, which together with the Phillips curve, changes (E.2)

to become

T2 = β−2

(
Ȳ

κ−1 (Π1 − 1) + Ȳ

)
b0
Π∗ + β−2 l0

(Π∗)2
. (E.5)

As (E.4) shows, with rigid prices, the nominal interest may decrease as a result of the increase

in inflation. In particular, the condition for the interest rate to decrease is that κ < 1.

The implication for T2 in (E.5) is that if κ < 1, then the fiscal gain from inflation policy is

higher, the more short-term debt is being held, the opposite conclusion from the accumulation

equation assumed by Missale and Blanchard (1994).

This is illustrated by the yellow line in panel (a) in Figure E.9, where κ = 0.33.81 As

shown in the figure, T2 is lower the more short term debt the government holds when entering

period 1 and while announcing the new inflation regime. The logic is that the government is

able to roll the debt over at a lower rate than before the policy was announced, and thus the

benefits of inflation are higher the more short-term debt the government holds. The red line

shows a case in which the duration of debt is irrelevant for T2. This happens when κ = 1.

The perfectly flexible prices already analyzed in last subsection corresponds to κ− >∞.82

E.4 Higher inflation only in period 1

The text suggested that a more fundamental difference with the literature such as Missale and

Blanchard (1994) was that the MPE only considers the benefit of inflation in a single period,

while the thought experiment above considers an increase in inflation over an extended period

of time – of the same duration as the long-term debt. The inflation incentives associated with

an extended period of inflation is fundamentally different from the one considered in the MPE.

There, the government is choosing inflation every period holding its expectation about future

inflation via some expectation function as shown below. And while the inflation incentive for

81As in the main text Ȳ = 1.
82It is worth pointing out that, while useful to illustrate this point, the two period model – provided prices

are rigid enough – may exaggerate how higher inflation reduces the nominal interest rate , even if we leave
a full study of this to future work. More generally, over a longer horizon, most models predict that interest
rates should ultimately rise together with the inflation rate. A stripped down New Keynesian model with, for
example, a perfectly forward looking Phillips curve is at the other extreme. It predicts that the nominal rate
jumps immediately with a higher inflation announcement, if it is fully credible. Note that none of the results
are relying on whether nominal interest rate rise quickly or not with inflation expectations, since we show
that the same insights hold true in the New Keynesian model in the quantitative section, where the nominal
interest rate would increase immediately with higher inflation expectations in the thought experiment above.
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an extended inflationary regime depended fundamentally on the degree of price rigidities, it

turns out that the degree of price rigidities is irrelevant for the mechanism once we consider

the MPE. Before moving to the MPE, however, consider first a slightly simpler case, which

also helps to understand the mechanics of the rollover incentive.

Suppose inflation in period 2 is given by some expectation function Π2(.) where the dot

refers to a state variable that might be influenced by policy. Then (E.2) becomes

T2 = β−1(1 + i1)
b0

Π1Π2(.)
+ β−2 l0

Π1Π2(.)
. (E.6)

Consider an inflation policy announced in period 1 that only implies that inflation in period 1

is higher, that is Π1 = Π∗. Consider first an example in which the function Π2(.) is unaffected

by Π1 – the most simple case – so that Π2 = 1. Assume that all prices are flexible so that

i1 = β−1Π2 = 1. Then

T2 = β−2 b0
Π∗ + β−2 l0

Π∗ . (E.7)

In this case, the fiscal benefit of inflation is independent of the duration of debt – it reduces

the real value of short and long-term debt in exactly the same way as seen in (E.7). Panel (b)

of Figure E.9 shows with the purple line, as before, T2 for the case when there is no inflation.

The blue line shows the effect of a 10 percent increase of inflation in period 1. Both lines are

horizontal, since as argued above, T2 is independent of x0 as the effect of the inflation is the

same on short- and long-term debt.

As before, however, things change with price rigidities. Following the same steps as before

by substituting for i1 yields

T2 = β−2

(
Ȳ

κ−1 (Π∗ − 1) + Ȳ

)
b0
Π∗ + β−2 l0

Π∗ .

For an inflation policy that only implies higher inflation in period 1 (Π1 = Π∗ = 1.10), with

inflation in period 2 unaffected (Π2 = 1), there are unambiguously larger benefits of holding

short-term debt (lower x0) because the increase in inflation reduces the nominal interest rate,

i1, via higher output. And it is only if the government holds short term debt that it can take

advantage of the new lower interest rate. The benefit of inflation (for any x0 < 1) is greater

the more rigid prices are, as shown by comparing the yellow line (κ = 0.3) to the red line

(κ = 1). This effect is related to the rollover incentive in the MPE but it is not, however,

exactly the same as will be shown next.
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E.5 The MPE and the rollover incentive

The benefit of holding short-term debt in response to inflation in period 1 only (holding Π2

fixed), does not correspond to the rollover incentive outlined in the main text of the paper. In

contrast to this effect, the rollover incentive operates regardless of whether prices are sticky or

flexible. We showed this in terms of period 1 policy functions for the fully flexible price case

in Figure A.5. This is because the computation of the MPE takes into account not only the

effect of output on i1 but also how Π2(.) is changed by the government’s choice of Π1(which

in turn has an additional effect on i1).

The MPE gives a precise theory of this relationship documented in the paper. Higher

inflation in period 1 in the MPE reduces inflation in period 2 through the state variable W1

which appears as an argument in Π2(.). Importantly W1 goes down with higher inflation in

period 1, thus reducing Π2(.) which is accordingly decreasing in Π1. Similarly, higher Π1, via

lower Π2(.), reduces i1−this is the Fisher effect mentioned in the paper. If the government has

a lot of short-term debt, the benefit of inflation in period 1 is thus larger than in the example

above, because not only does higher Π1 raise Y1 and thereby reduce i1, it also reduces Π2(.)

(thus further reducing i1 via the Fisher effect).

E.6 Conclusion

The purpose of this Section is to explicitly show the difference between the inflation incentive

in the MPE and in some of the existing literature that has tended to emphasize that long-term

debt gives the government higher inflation incentive. It was shown that the result (or typically

a direct assumption) in this literature does not contradict the MPE. The main reason for the

seeming divergence is that the literature emphasizing that long term debt generates higher

inflation incentive is typically considering an inflation policy over an extended period of time,

and is thus perhaps best interpreted as analyzing the incentive for a “regime change” in which

case a central bank moves from a low inflation regime towards a high one over an extended

period of time.83

The MPE, in contrast, is concerned with how short-term debt changes the inflation incen-

tive of the government period by period, and thus may better capture the incentive effects of

debt-policy within a single policy regime. Another important point is that the assumption of

price rigidities can have an important effect on the inflation incentive, especially when con-

sidering an inflation policy over a long period of time, as some of the literature cited has in

mind. A point highlighted, however, and also stressed in the main text, is that the qualitative

conclusion of the MPE does not depend on the degree of price rigidities. For either sticky or

83To be clear, we did not explicitly formalize how one should model a regime change, but we think this is
the most reasonable interpretation of this literature.
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fully flexible prices, reducing the duration of government debt increases its inflation incentive

in the MPE via the rollover incentive. The rollover incentive is thus the main mechanism

behind the results in the paper.
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